OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16310–16321

Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 16310-16321 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of the phase-shift method allows a significant resolution enhancement for proximity lithography in mask aligners. Typically a resolution of 3 µm (half-pitch) at a proximity distance of 30 µm is achieved utilizing binary photomasks. By using an alternating aperture phase shift photomask (AAPSM), a resolution of 1.5 µm (half-pitch) for non-periodic lines and spaces pattern was demonstrated at 30 µm proximity gap. In a second attempt a diffractive photomask design for an elbow pattern having a half-pitch of 2 µm was developed with an iterative design algorithm. The photomask was fabricated by electron-beam lithography and consists of binary amplitude and phase levels.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Imaging Systems

Original Manuscript: March 3, 2014
Revised Manuscript: May 16, 2014
Manuscript Accepted: May 21, 2014
Published: June 24, 2014

T. Weichelt, U. Vogler, L. Stuerzebecher, R. Voelkel, and U. D. Zeitner, "Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks," Opt. Express 22, 16310-16321 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Karl Suss: SUSS Mask Aligner MJB 3 Datasheet.
  2. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).
  3. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express18(19), 19485–19494 (2010). [CrossRef] [PubMed]
  4. L. Stuerzebecher, F. Fuchs, T. Harzendorf, and U. D. Zeitner, “Pulse compression grating fabrication by diffractive proximity photolithography,” Opt. Lett.39(4), 1042–1045 (2014). [CrossRef] [PubMed]
  5. S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001). [CrossRef]
  6. G. A. Cirino, R. D. Mansano, P. Verdonck, L. Cescato, and L. G. Neto, “Diffractive phase-shift lithography photomask operating in proximity printing mode,” Opt. Express18(16), 16387–16405 (2010). [CrossRef] [PubMed]
  7. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: New illumination system,” Opt. Express18(20), 20968–20978 (2010). [CrossRef] [PubMed]
  8. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  9. F. M. Schellenberg, “A history of resolution enhancement technology,” Opt. Rev.12(2), 83–89 (2005). [CrossRef]
  10. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982). [CrossRef]
  11. M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).
  12. M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express20, 4903–4920 (2012).
  13. W. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. P. B. Meliorisz, “Simulation of Proximity Printing,” Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg (2010).
  15. K.-H. Brenner and W. Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt.32(26), 4984–4988 (1993). [CrossRef] [PubMed]
  16. C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited