OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16363–16376

An analytical model to investigate the resonant modes of the self-rolled-up microtube using conformal transformation

Xiaogang Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16363-16376 (2014)
http://dx.doi.org/10.1364/OE.22.016363


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self rolled-up microtube is a natural device that may couple light vertically out of a planar photonic device. It is instructive to understand the optical resonant modes propagating inside the microtube waveguide. All previous models for the microtube resonant modes ignored the nonconcentric nature of its structure. Conformal transformation was used for the first time to address this issue and to obtain equivalent planar parallel-piped waveguide structure which in turn leads to an approximate analytical solution of the resonant modes of the tube. This work paves the way for accurately calculating the coupling coefficient between the microtube and a planar waveguide. The results calculated using this model matched very well with published experimental data and COMSOL simulation.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(230.0230) Optical devices : Optical devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: April 14, 2014
Revised Manuscript: May 31, 2014
Manuscript Accepted: June 13, 2014
Published: June 24, 2014

Citation
Xiaogang Chen, "An analytical model to investigate the resonant modes of the self-rolled-up microtube using conformal transformation," Opt. Express 22, 16363-16376 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16363


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E6(1-4), 828–831 (2000). [CrossRef]
  2. X. L. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys.41, 193001 (2008).
  3. P. Froeter, X. Yu, W. Huang, F. Du, M. Y. Li, I. Chun, S. H. Kim, K. J. Hsia, J. A. Rogers, and X. L. Li, “3D hierarchical architectures based on self-rolled-up silicon nitride membranes,” Nanotechnology24(47), 475301 (2013). [CrossRef] [PubMed]
  4. I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. L. Li, “Geometry Effect on the Strain-Induced Self-Rolling of Semiconductor Membranes,” Nano Lett.10(10), 3927–3932 (2010). [CrossRef] [PubMed]
  5. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006). [CrossRef] [PubMed]
  6. Z. B. Tian, V. Veerasubramanian, P. Bianucci, Z. T. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011). [CrossRef] [PubMed]
  7. V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009). [CrossRef] [PubMed]
  8. X. L. Li, “Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties,” Adv. Opt. Photonics3(4), 366–387 (2011). [CrossRef]
  9. I. S. Chun, K. Bassett, A. Challa, and X. L. Li, “Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010). [CrossRef]
  10. F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009). [CrossRef] [PubMed]
  11. Z. Mi, F. Li, Y. L. Chang, and J. L. Wang, “High Performance Quantum Dot Microtube Lasers and Nanowire LEDs on Si,” ECS Trans.28, 285–295 (2010).
  12. X. Miao, I. S. Chun, and X. L. Li, “Strain-Induced, Self Rolled-Up Semiconductor Microtube Resonators: A New Architecture for Photonic Device Applications,” Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices, 249-259 (2011).
  13. C. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, C. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012). [CrossRef]
  14. S. Böttner, S. Li, M. R. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013). [CrossRef]
  15. Z. B. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. T. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011). [CrossRef] [PubMed]
  16. M. Heiblum and J. H. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron.11(2), 75–83 (1975). [CrossRef]
  17. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol.16(8), 1433–1446 (1998). [CrossRef]
  18. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Physica E40(6), 1836–1839 (2008). [CrossRef]
  19. T. Kipp, “Optical microtube ring cavities,” Adv. Solid State Phys.47, 17–28 (2008). [CrossRef]
  20. G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications,” ACS Nano4(6), 3123–3130 (2010). [CrossRef] [PubMed]
  21. A. Biberman, N. Sherwood-Droz, X. L. Zhu, K. Preston, G. Hendry, J. S. Levy, J. N. Chan, H. W. Wang, M. Lipson, and K. Bergman, “Photonic network-on-chip architecture using 3D integration,” Proc. SPIE7942, 79420M (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited