OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16424–16430

Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides

Davinson Mariano da Silva, Luciana Reyes Pires Kassab, Acácio L. Siarkowski, and Cid B. de Araújo  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16424-16430 (2014)
http://dx.doi.org/10.1364/OE.22.016424


View Full Text Article

Enhanced HTML    Acrobat PDF (1495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication of waveguide amplifiers produced by RF-sputtering, using a PbO-GeO2 glass (PGO glass) film codoped with Er3+/Yb3+. RIB waveguides were obtained from PGO thin films using optical lithography followed by reactive ion etching process. The optical losses in the waveguide were ≈1.0 dB/cm and the maximum internal gain at 1.53 µm, with excitation at 980 nm, was 3 dB/cm. Nanostructured gold films deposited on the waveguides enhanced the Er3+ ions photoluminescence (PL) by ≈400% in the red region and ≈30% in the infrared, under 980 nm pumping. The optical gain was enhanced and reached 6.5 dB/cm. The results demonstrate that the PGO waveguides, with or without gold nanoparticles, are promising for integrated photonics.

© 2014 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(310.2785) Thin films : Guided wave applications
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Integrated Optics

History
Original Manuscript: April 7, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 13, 2014
Published: June 25, 2014

Citation
Davinson Mariano da Silva, Luciana Reyes Pires Kassab, Acácio L. Siarkowski, and Cid B. de Araújo, "Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides," Opt. Express 22, 16424-16430 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16424


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Fu, W. Cai, C. Kan, C. Li, and L. Zhang, “Controllable optical properties of Au/SiO2 nanocomposite induced by ultrasonic irradiation and thermal annealing,” Appl. Phys. Lett.83(1), 36–38 (2003). [CrossRef]
  2. K. E. Lipinska-Kalita, D. M. Krol, R. J. Hemley, G. Mariotto, P. E. Kalita, and Y. Ohki, “Synthesis and characterization of metal-dielectric composites with copper nanoparticles embedded in a glass matrix: A multitechnique approach,” J. Appl. Phys.98(5), 054301 (2005). [CrossRef]
  3. A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, S. Pelli, H. Portales, J. Zheng, and G. Righini, “Assessment of spectroscopic properties of erbium ions in a soda-lime silicate glass after silver–sodium exchange,” Opt. Mater.27(11), 1743–1747 (2005). [CrossRef]
  4. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev.250(11–12), 1294–1314 (2006). [CrossRef]
  5. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  6. D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett.90(8), 081913 (2007). [CrossRef]
  7. C. B. de Araújo, D. S. da Silva, T. A. A. de Assumpção, L. R. P. Kassab, and D. M. da Silva, “Enhanced optical properties of germanate and tellurite glasses containing metal or semiconductor nanoparticles,” Sci. World J.2013, 385193 (2013).
  8. L. R. P. Kassab, D. S. da Silva, R. de Almeida, and C. B. de Araújo, “Photoluminescence enhancement by gold nanoparticles in Eu3+ doped GeO2-Bi2O3 glasses,” Appl. Phys. Lett.94(10), 101912 (2009). [CrossRef]
  9. L. A. Gómez, F. E. P. dos Santos, A. S. L. Gomes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett.92(14), 141916 (2008). [CrossRef]
  10. C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. da Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin.133, 180–183 (2013). [CrossRef]
  11. D. M. da Silva, L. R. P. Kassab, J. R. Martinelli, and C. B. de Araújo, “Production and characterization of RF-sputtered PbO-GeO2 amorphous thin films containing silver and gold nanoparticles,” J. Non-Cryst. Solids356(44-49), 2602–2605 (2010). [CrossRef]
  12. T. A. A. de Assumpção, L. R. P. Kassab, A. S. L. Gomes, C. B. de Araújo, and N. U. Wetter, “Influence of the heat treatment on the nucleation of silver nanoparticles in Tm3+ doped PbO-GeO2 glasses,” Appl. Phys. B103(1), 165–169 (2011). [CrossRef]
  13. L. R. P. Kassab, M. E. Camilo, C. T. Amâncio, D. M. Silva, and J. R. Martinelli, “Effects of gold nanoparticles in the green and red emissions of TeO2–PbO–GeO2 glasses doped with Er3+–Yb3+,” Opt. Mater.33(12), 1948–1951 (2011). [CrossRef]
  14. B. Ghosh, P. Chakraborty, S. Mohapatra, P. A. Kurian, C. Vijayan, P. C. Deshmukh, and P. Mazzoldi, “Linear and nonlinear optical absorption in copper nanocluster-glass composites,” Mater. Lett.61(23–24), 4512–4515 (2007). [CrossRef]
  15. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  16. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  17. A. Pillonnet, A. Berthelot, A. Pereira, O. Benamara, S. Derom, G. Colas des Francs, and A.-M. Jurdyc, “Coupling distance between Eu3+ emitters and Ag nanoparticles,” Appl. Phys. Lett.100(15), 153115 (2012). [CrossRef]
  18. M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett.85(17), 3863–3865 (2004). [CrossRef]
  19. T. Som and B. Karmakar, “Enhancement of Er3+ upconverted luminescence in Er3+: Au-antimony glass dichroic nanocomposites containing hexagonal Au nanoparticles,” J. Opt. Soc. Am. B26(12), B21–B27 (2009). [CrossRef]
  20. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013). [CrossRef]
  21. D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead-pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics8(4), 1667–1674 (2013). [CrossRef]
  22. V. D. Del Cacho, D. M. da Silva, L. R. P. Kassab, A. L. Siarkowski, and N. I. Morimoto, “PbO-GeO2 rib waveguides for photonic applications,” J. Alloy. Comp.509, S434–S437 (2011). [CrossRef]
  23. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express18(18), 19192–19200 (2010). [CrossRef] [PubMed]
  24. C. C. Baker, J. Heikenfeld, Z. Yu, and A. J. Steckl, “Optical amplification and electroluminescence at 1.54 µm in Er-doped zinc silicate germanate on silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004). [CrossRef]
  25. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012). [CrossRef]
  26. T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett.92(13), 132105 (2008). [CrossRef]
  27. A. E. Christensen, C. Uhrenfeldt, B. Julsgaard, P. Balling, and A. N. Larsen, “Interaction between Au nanoparticles and Er3+ ions in a TiO2 matrix: Up-conversion of infrared light,” Energy Procedia10, 111–116 (2011). [CrossRef]
  28. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt.22(23), 3892–3894 (1983). [CrossRef] [PubMed]
  29. M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011). [CrossRef] [PubMed]
  30. F. A. Bomfim, J. R. Martinelli, L. R. P. Kassab, T. A. A. Assumpção, and C. B. de Araújo, “Infrared-to-visible upconversion in Yb3+/Er3+ co-doped PbO–GeO2 glass with silver nanoparticles,” J. Non-Cryst. Solids356(44-49), 2598–2601 (2010). [CrossRef]
  31. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys.43(6), 1978–1989 (1965). [CrossRef]
  32. L. R. P. Kassab, W. G. Hora, W. Lozano B, M. A. S. de Oliveira, and G. S. Maciel, “Optical properties of Er3+ doped GeO2-PbO glass: Effect of doping with Bi2O3,” Opt. Commun.269(2), 356–361 (2007). [CrossRef]
  33. P. G. Kik and A. Polman, “Erbium doped optical waveguide amplifiers on silicon,” MRS Bull.23, 48–54 (1998).
  34. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater.12(1), 1–18 (1999). [CrossRef]
  35. Z. Czigány and G. Radnóczi, “Columnar growth structure and evolution of wavy interface morphology in amorphous multilayered thin films,” Thin Solid Films343–344, 5–8 (1999). [CrossRef]
  36. A. A. Nagaraj and Krokhin, “Long-range surface plasmons in dielectric-metal-dielectric structure with highly anisotropic substrates,” Phys. Rev. B81(8), 085426 (2010). [CrossRef]
  37. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited