OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16528–16537

Self-referenced technique for monitoring and analysing the non-linear dynamics of semiconductor lasers

Christophe Gosset, Ivan Aldaya, Cheng Wang, Heming Huang, Xin You, Jacky Even, Gabriel Campuzano, and Frédéric Grillot  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16528-16537 (2014)
http://dx.doi.org/10.1364/OE.22.016528


View Full Text Article

Enhanced HTML    Acrobat PDF (2052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose in this paper a self-referenced method based on asynchronous sampling to monitor the waveform of periodic and quasi-periodic signals, with a low number of samples, typically 214 or lower. It provides a high-resolution representation of the signal under test, representative of the analog intensity signal under test. Additionally, the proposed approach is robust to the timing jitter of the signal, as experimentally demonstrated. Such features enable the accurate display of periodic and quasi-periodic signals. The method is applied to the characterization of laser dynamics, such as time series and phase portrait of periodic nonlinear regimes in optically injected lasers.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Optical Communications

History
Original Manuscript: January 21, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 4, 2014
Published: June 27, 2014

Citation
Christophe Gosset, Ivan Aldaya, Cheng Wang, Heming Huang, Xin You, Jacky Even, Gabriel Campuzano, and Frédéric Grillot, "Self-referenced technique for monitoring and analysing the non-linear dynamics of semiconductor lasers," Opt. Express 22, 16528-16537 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16528


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Noirie, F. Cerou, G. Mostakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye diagram and BER using asynchronous under-sampling of the signal,” in Proc. European Conference on Optical Communication (ECOC), PD2.2 (2002)
  2. M. Westlund, H. Sunnerud, M. Karlsson, P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol. 23(3), 1088–1099 (2005). [CrossRef]
  3. M. Sköld, M. Westlund, H. Sunnerud, P. A. Andrekson, “All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats,” J. Lightwave Technol. 27(16), 3662–3671 (2009). [CrossRef]
  4. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005). [CrossRef]
  5. M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012). [CrossRef]
  6. S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” in Physics Report (Elsevier, 2005)
  7. D. M. Kane and K. A. Shore, Unlocking Dynamic Diversity (Wiley, 2005).
  8. J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340. [CrossRef]
  9. J. P. Toomey, C. Nichkawde, D. M. Kane, K. Schires, I. D. Henning, A. Hurtado, M. J. Adams, “Stability of the nonlinear dynamics of an optically injected VCSEL,” Opt. Express 20(9), 10256–10270 (2012). [CrossRef] [PubMed]
  10. M. Selmi, C. Gosset, M. Noelle, P. Ciblat, Y. Jaouen, “Blockwise digital signal processing for Polmux QAM/PSK optical coherent systems,” J. Lightwave Technol. 29(20), 3070–3082 (2011). [CrossRef]
  11. P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002). [CrossRef]
  12. K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography (Wiley, 2012).
  13. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982). [CrossRef]
  14. O. Lidoyne, P. Gallion, C. Chabran, and G. Debarge, “Locking range, phase noise and power spectrum of an injection- locked semiconductor laser,” IEE Proceedings Journal of Optoelectronics, 137, 147–154, (1990). [CrossRef]
  15. Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981). [CrossRef]
  16. S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994). [CrossRef]
  17. X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999). [CrossRef]
  18. T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997). [CrossRef]
  19. J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997). [CrossRef]
  20. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  21. N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985). [CrossRef]
  22. A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002). [CrossRef]
  23. T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999). [CrossRef]
  24. X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011). [CrossRef]
  25. M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000). [CrossRef]
  26. S. C. Chan, J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005). [CrossRef]
  27. Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011). [CrossRef]
  28. T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999). [CrossRef]
  29. C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012). [CrossRef]
  30. C. Cui, X. Fu, S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009). [CrossRef] [PubMed]
  31. Y. H. Hung, C. H. Chu, S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013). [CrossRef] [PubMed]
  32. H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).
  33. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010). [CrossRef]
  34. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013). [CrossRef]
  35. J. P. Zhuang, S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013). [CrossRef] [PubMed]
  36. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012). [CrossRef]
  37. I. A. Murakami, “Phase Locking and Chaos Synchronization in injection-Locked Semiconductor Lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited