OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16619–16628

Speckle suppression via sparse representation for wide-field imaging through turbid media

Hwanchol Jang, Changhyeong Yoon, Euiheon Chung, Wonshik Choi, and Heung-No Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16619-16628 (2014)
http://dx.doi.org/10.1364/OE.22.016619


View Full Text Article

Enhanced HTML    Acrobat PDF (2942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.0113) Imaging systems : Imaging through turbid media
(100.3200) Image processing : Inverse scattering

ToC Category:
Imaging Systems

History
Original Manuscript: April 22, 2014
Revised Manuscript: June 15, 2014
Manuscript Accepted: June 22, 2014
Published: June 27, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Hwanchol Jang, Changhyeong Yoon, Euiheon Chung, Wonshik Choi, and Heung-No Lee, "Speckle suppression via sparse representation for wide-field imaging through turbid media," Opt. Express 22, 16619-16628 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012). [CrossRef]
  2. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  3. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  4. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  5. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011). [CrossRef] [PubMed]
  6. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010). [CrossRef] [PubMed]
  7. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep3, 1909 (2013). [CrossRef] [PubMed]
  8. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010). [CrossRef]
  9. Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett.36(21), 4263–4265 (2011). [CrossRef] [PubMed]
  10. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev.51(1), 34–81 (2009). [CrossRef]
  11. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A.109(26), E1679–E1687 (2012). [CrossRef] [PubMed]
  12. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods9(7), 721–723 (2012). [CrossRef] [PubMed]
  13. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  14. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007). [CrossRef] [PubMed]
  15. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  16. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66(11), 1145–1150 (1976). [CrossRef]
  17. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett.61(20), 2328–2331 (1988). [CrossRef] [PubMed]
  18. E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant dictionaries,” Appl. Comput. Harmon. Anal.31(1), 59–73 (2011). [CrossRef]
  19. J. Yang and Y. Zhang, “Alternating direction algorithms for L1-problems in compressive sensing,” SIAM J. Sci. Comput.33(1), 250–278 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited