OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16645–16659

Array truncation effects in infrared frequency selective surfaces

Jeffrey D’ Archangel, Eric Tucker, Markus B. Raschke, and Glenn Boreman  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 16645-16659 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metasurface consisting of an infinite array of square loops was designed for maximal absorptivity for s-polarized light at a wavelength of 10.6 µm and 60 degrees off-normal. We investigate the effects of array truncation in finite arrays of this design using far-field FTIR spectroscopy and scattering scanning near-field optical microscopy. The far-field spectra are observed to blue-shift with decreasing array size. The near-field images show a corresponding decrease in uniformity of the local electric field amplitude and phase spatial distributions. Simulations of the far-field absorption spectra and local electric field are consistent with the measured results.

© 2014 Optical Society of America

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: March 12, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: June 19, 2014
Published: June 27, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Jeffrey D’ Archangel, Eric Tucker, Markus B. Raschke, and Glenn Boreman, "Array truncation effects in infrared frequency selective surfaces," Opt. Express 22, 16645-16659 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009). [CrossRef] [PubMed]
  2. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009). [CrossRef]
  3. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011). [CrossRef] [PubMed]
  4. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011). [CrossRef]
  5. S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012). [CrossRef] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  7. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012). [CrossRef]
  8. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  9. P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013). [CrossRef] [PubMed]
  10. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013). [CrossRef]
  11. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011). [CrossRef]
  12. J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013). [CrossRef] [PubMed]
  13. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009). [CrossRef]
  14. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010). [CrossRef] [PubMed]
  15. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  16. S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011). [CrossRef]
  17. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett.33(8), 848–850 (2008). [CrossRef] [PubMed]
  18. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011). [CrossRef] [PubMed]
  19. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012). [CrossRef] [PubMed]
  20. M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009). [CrossRef]
  21. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010). [CrossRef] [PubMed]
  22. E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013). [CrossRef]
  23. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010). [CrossRef] [PubMed]
  24. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  25. E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).
  26. J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011). [CrossRef]
  27. W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009). [CrossRef]
  28. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012). [CrossRef] [PubMed]
  29. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express21(11), 13256–13271 (2013). [CrossRef] [PubMed]
  30. A. M. M. A. Allam and E. A. Parker, “Application of Pocklington’s equation to analysis of dipole frequency-selective surfaces of finite size,” IEEE Proc.-H 134, 521–526 (1987). [CrossRef]
  31. R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987). [CrossRef]
  32. W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988). [CrossRef]
  33. C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001). [CrossRef]
  34. V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002). [CrossRef]
  35. F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).
  36. B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001). [CrossRef]
  37. D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002). [CrossRef]
  38. M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010). [CrossRef]
  39. W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011). [CrossRef]
  40. G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011). [CrossRef]
  41. M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012). [CrossRef] [PubMed]
  42. L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013). [CrossRef]
  43. P. W. Grounds and K. J. Webb, “Numerical analysis of finite frequency selective surfaces,” in Antennas and Propagation Society International Symposium (APS Digest, 1988), pp. 746–749. [CrossRef]
  44. S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999). [CrossRef]
  45. E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008). [CrossRef]
  46. C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031. [CrossRef]
  47. E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012). [CrossRef]
  48. I. T. Ekpo, J. C. Batchelor, and E. A. Parker, “Transmitted power distribution across a minimal size FSS for long wavelength operation,” in 2010Loughborough Antennas and Propagation Conference, pp. 553–556.
  49. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006). [CrossRef]
  50. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010). [CrossRef] [PubMed]
  51. K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010). [CrossRef]
  52. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012). [CrossRef] [PubMed]
  53. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012). [CrossRef] [PubMed]
  54. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003). [CrossRef]
  55. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express19(7), 6450–6461 (2011). [CrossRef] [PubMed]
  56. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002). [CrossRef]
  57. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007). [CrossRef] [PubMed]
  58. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000). [CrossRef] [PubMed]
  59. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001). [CrossRef]
  60. J. N. Walford, K. A. Nugent, A. Roberts, and R. E. Scholten, “High-resolution phase imaging of phase singularities in the focal region of a lens,” Opt. Lett.27(5), 345–347 (2002). [CrossRef] [PubMed]
  61. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited