OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16660–16668

THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ(2)

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 16660-16668 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si3N4 straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ(2) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Terahertz Optics

Original Manuscript: March 5, 2014
Revised Manuscript: April 27, 2014
Manuscript Accepted: May 5, 2014
Published: June 30, 2014

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama, "THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ(2)," Opt. Express 22, 16660-16668 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]
  2. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(9A), 6541–6545 (2005). [CrossRef]
  3. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010). [CrossRef]
  4. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]
  5. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  6. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  7. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011). [CrossRef] [PubMed]
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  10. D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984). [CrossRef]
  11. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002). [CrossRef]
  12. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007). [CrossRef] [PubMed]
  13. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996). [CrossRef]
  14. F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4(12), 4556–4578 (1971). [CrossRef]
  15. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003). [CrossRef]
  16. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999). [CrossRef] [PubMed]
  17. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008). [CrossRef] [PubMed]
  18. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18(19), 2008–2010 (2006). [CrossRef]
  19. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett. 88(7), 071118 (2006). [CrossRef]
  20. K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007). [CrossRef]
  21. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17(8), 6676–6681 (2009). [CrossRef] [PubMed]
  22. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett. 35(15), 2508–2510 (2010). [CrossRef] [PubMed]
  23. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010). [CrossRef]
  24. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974). [CrossRef]
  25. R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013). [CrossRef] [PubMed]
  26. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010). [CrossRef] [PubMed]
  27. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012). [CrossRef]
  28. J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43(9), 1953–1954 (2004). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
  31. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004). [CrossRef]
  32. K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69(2-3), 597–600 (2008). [CrossRef]
  33. T. B. Jones, M. Hochberg, R. Soref, and A. Scherer, “Design of a tunable, room temperature, continuous-wave terahertz sources and detector using silicon waveguides,” J. Opt. Soc. Am. B 25(2), 261–268 (2008).
  34. E. L. Shirley and H. M. Lawler, “Phonon infrared spectra of Si and Ge: calculating and assigning features,” Phys. Rev. 76(5), 054116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited