OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16686–16693

Plasmonic focusing in spiral nanostructures under linearly polarized illumination

Jie Li, Chaojie Yang, Huabo Zhao, Feng Lin, and Xing Zhu  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 16686-16693 (2014)
http://dx.doi.org/10.1364/OE.22.016686


View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the focusing properties of nanostructured plasmonic spiral lens by using linearly polarized illumination, and analysed its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. We demonstrate that under linearly polarized illumination, spiral plasmonic lens shows focusing property regardless its polarization directions, and the focal spot is about 250nm when the incident wavelength is 671nm. The intensity of the focal spot could also be controlled by altering the radius, the number of turns and the width of the nanostructured spiral slot which are confirmed by finite-difference time-domain simulation.

© 2014 Optical Society of America

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization

ToC Category:
Plasmonics

History
Original Manuscript: March 31, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: June 16, 2014
Published: June 30, 2014

Citation
Jie Li, Chaojie Yang, Huabo Zhao, Feng Lin, and Xing Zhu, "Plasmonic focusing in spiral nanostructures under linearly polarized illumination," Opt. Express 22, 16686-16693 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010). [CrossRef] [PubMed]
  3. W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010). [CrossRef] [PubMed]
  4. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010). [CrossRef]
  5. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  6. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009). [CrossRef]
  7. D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  8. Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011). [CrossRef] [PubMed]
  9. X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
  10. D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009). [CrossRef] [PubMed]
  11. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010). [CrossRef] [PubMed]
  12. F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011). [CrossRef] [PubMed]
  13. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  14. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007). [CrossRef] [PubMed]
  15. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008). [CrossRef] [PubMed]
  16. Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011). [CrossRef] [PubMed]
  17. Q. W. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  18. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer,” Nano Lett. 10(6), 2075–2079 (2010). [CrossRef] [PubMed]
  19. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009). [CrossRef] [PubMed]
  20. W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012). [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  22. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  23. W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010). [CrossRef] [PubMed]
  24. A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990). [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  26. J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited