OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16784–16801

Validation of H2O continuum absorption models in the wave number range 180–600 cm−1 with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site

Giuliano Liuzzi, Guido Masiello, Carmine Serio, Luca Palchetti, and Giovanni Bianchini  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 16784-16801 (2014)
http://dx.doi.org/10.1364/OE.22.016784


View Full Text Article

Enhanced HTML    Acrobat PDF (1902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents the results concerning the analysis of a set of atmospheric emitted (down welling) spectral radiance observations in the spectral range 180 to 1100 cm−1 acquired at the Dome-C site in Antarctica during an extensive field campaign in 2011–2012. The work has been mainly focused on retrieving and validating the coefficients of the foreign contribution to the water vapour continuum absorption, within a spectral range overlapping the water vapour rotational band. Retrievals have been performed by using a simultaneous physical retrieval procedure for atmospheric and spectroscopic parameters. Both day (summer) and night (winter) spectra have been used in our analysis. This new set of observations in the far infrared range has allowed us to extend validation and verification of state-of-art water vapour continuum absorption models down to 180 cm−1. Results show that discrepancies between measurements and models are less than 10% in the interval 350–590 cm−1, while they are slightly larger at wave numbers below 350 cm−1. On overall, our study shows a good consistency between observations and state-of-art models and provides evidence toward needing to adjust absorptive line strengths. Finally, it has been found that there is a good agreement between the coefficients retrieved using either summer or winter spectra, which are acquired in far different meteorological conditions.

© 2014 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(030.5620) Coherence and statistical optics : Radiative transfer
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 24, 2014
Revised Manuscript: June 7, 2014
Manuscript Accepted: June 7, 2014
Published: July 1, 2014

Citation
Giuliano Liuzzi, Guido Masiello, Carmine Serio, Luca Palchetti, and Giovanni Bianchini, "Validation of H2O continuum absorption models in the wave number range 180–600 cm−1 with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site," Opt. Express 22, 16784-16801 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor,” J. Geophys. Res.97, 15761–15785 (1992). [CrossRef]
  2. J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The farinfrared Earth,” Rev. Geophys.46, RG4004 (2008).
  3. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res.23, 229–241 (1989). [CrossRef]
  4. D. C. Tobin, F. A. Best, P. D. Brown, S. A. Clough, R. G. Dedecker, R. G. Ellingson, R. K. Garcia, H. B. Howell, R. O. Knuteson, E. J. Mlawer, H. E. Revercomb, J. F. Short, P. F. W. van Delst, and V. P. Walden, “Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 6 mm,” J. Geophys. Res.104, 2081–2092 (1999). [CrossRef]
  5. R. Bhawar, G. Bianchini, A. Bozzo, M. Cacciani, M. R. Calvello, M. Carlotti, F. Castagnoli, V. Cuomo, P. Di Girolamo, T. Di Iorio, L. Di Liberto, A. di Sarra, F. Esposito, G. Fiocco, D. Fuà, G. Grieco, T. Maestri, G. Masiello, G. Muscari, L. Palchetti, E. Papandrea, G. Pavese, R. Restieri, R. Rizzi, F. Romano, C. Serio, D. Summa, G. Todini, and E. Tosi, “Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band,” Geophys. Res. Lett.35, L04812 (2008). [CrossRef]
  6. C. Serio, F. Esposito, G. Masiello, G. Pavese, M. R. Calvello, G. Grieco, V. Cuomo, H. L. Buijs, and C. B. Roy, “Interferometer for ground-based observations of emitted spectral radiance from the troposphere: evaluation and retrieval performance,” Appl. Opt.47, 3909–3919 (2008). [CrossRef] [PubMed]
  7. J. S. Delamere, S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache, “A far-infrared radiative closure study in the Arctic: Application to water vapor,” J. Geophys. Res.115, D17106 (2010). [CrossRef]
  8. G. Masiello, C. Serio, F. Esposito, and L. Palchetti, “Validation of line and continuum spectroscopic parameters with measurements of atmospheric emitted spectral radiance from far to mid infrared wave number range,” J. Quant. Spectrosc. Radiat. Transfer113, 1286–1299 (2012). [CrossRef]
  9. E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, “Development and recent evaluation of the MT CKD model of continuum absorption,” Phil. Trans. R. Soc. A370, 1–37 (2012). [CrossRef]
  10. P. D. Green, S. M. Newman, R. J. Beeby, J. E. Murray, J. C. Pickering, and J. E. Harries, “Recent advances in measurement of the water vapor continuum in the far-infrared spectral region,” Phil. Trans. R. Soc. A370, 2637–2655 (2012). [CrossRef]
  11. C. Serio, G. Masiello, F. Esposito, P. Di Girolamo, T. Di Iorio, L. Palchetti, G. Bianchini, G. Muscari, G. Pavese, R. Rizzi, B. Carli, and V. Cuomo, “Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2 O rotational band from 240 to 590 cm−1,” Opt. Express16(20), 15816–15833 (2008). [CrossRef] [PubMed]
  12. G. Bianchini and L. Palchetti, “Technical Note: REFIR-PAD level 1 data analysis and performance characterization,” Atm. Chem. and Phys.8, 3817–3826 (2008). [CrossRef]
  13. R. Rizzi, L. Palchetti, B. Carli, R. Bonsignori, J. E. Harries, J. Leotin, S. C. Peskett, C. Serio, and A. Sutera, “Feasibility of the spaceborne radiation explorer in the far infrared (REFIR),” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE4485, 202 (2002). [CrossRef]
  14. L. Palchetti, G. Bianchini, F. Castagnoli, B. Carli, C. Serio, and F. Esposito, “Breadboard of a Fourier-transform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission,” Appl. Opt.44, 2970–2979 (2005). [CrossRef]
  15. U. Amato, D. De Canditiis, and C. Serio, “Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers,” Appl. Opt.37, 6537–6543 (1998). [CrossRef]
  16. U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Env. Model. & Software17(7), 651–667 (2002). [CrossRef]
  17. F. Hilton, R. Armante, R. August, C. Barnet, A. Bouchard, C. Camy-Peyret, V. Capelle, L. Clarisse, C. Clerbaux, P.F. Coheur, A. Collard, C. Crevoisier, G. Dufour, D. Edwards, F. Faijan, N. Fourrié, A. Gambacorta, M. Goldberg, V. Guidard, D. Hurtmans, S. Illingworth, N. Jacquinet-Husson, T. Kerzenmacher, D. Klaes, L. Lavanant, G. Masiello, M. Matricardi, A. McNally, S. Newman, E. Pavelin, S. Payan, E. Péquignot, S. Peyridieu, T Phulpin, J. Remedios, P. Schlüssel, C. Serio, L. Strow, C. Stubenrauch, J. Taylor, D. Tobin, W. Wolf, and D. Zhou, “Hyper-spectral Earth Observation from IASI: four years of accomplishments,” Bulletin of the American Meteorological Society93, 347–370 (2012). [CrossRef]
  18. G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atm. Chem. and Phys.9, 8771–8783 (2009). [CrossRef]
  19. G. Masiello and C. Serio, “Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances,” Appl. Opt.52, 2428–2446 (2013). [CrossRef] [PubMed]
  20. G. Liuzzi, G. Masiello, C. Serio, S. Fonti, F. Mancarella, and T. L. Roush, “Search for Martian methane with TES data: development of a dedicated radiative transfer code: first results,” in Infrared Remote Sensing and Instrumentation XXI, M. Strojnik Scholl and G. Páez, eds., Proc. SPIE8867,(SPIE, Bellingham, WA, 2013) 88670B (2013). [CrossRef]
  21. G. Masiello and C. Serio, “An effective water vapor self-broadening scheme for look-up-table-based radiative transfer,” in Remote Sensing of Clouds and the Atmosphere VII, K. P. Schaefer, O. Lado-Bordowsky, A. Comeron, and R. H. Picard, eds., Proc. SPIE4882, 52 (2003). [CrossRef]
  22. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication,” J. Quant. Spectrosc. Radiat. Transfer91, 233–244 (2005). [CrossRef]
  23. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer130, 4–50 (2013). [CrossRef]
  24. C. D. Rodgers, Inverse Methods for Atmospheric Sounding Theory and Practice2(World Scientific, Singapore, 2000).
  25. A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Env. Model. & Software20(9), 1111–1126 (2005). [CrossRef]
  26. G. Masiello, C. Serio, and P. Antonelli, “Inversion for atmospheric thermodynamical parameters of IASI data in the principal components space,” Quantum J.R. Meteorol. Soc.138, 103–117 (2012). [CrossRef]
  27. P.-C. Hansen, “Analysis of Discrete Ill-Posed Problems by Means of the L-Curve,” SIAM Review34, 561–580 (1992). [CrossRef]
  28. P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water Vapor from 300 to 1100 cm−1,” J. Chem. Phys.87(1), 163–170 (1987). [CrossRef]
  29. Q. Ma and R. H. Tipping, “The density matrix of H2O-N2 in the coordinate representation: A Monte Carlo calculation of the far-wing line shape,” J. Chem. Phys.112(3), 574–584 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited