OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16802–16818

Artwork visualization using a solid-state lighting engine with controlled photochemical safety

Arūnas Tuzikas, Artūras Žukauskas, Rimantas Vaicekauksas, Andrius Petrulis, Pranciškus Vitta, and Michael Shur  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 16802-16818 (2014)
http://dx.doi.org/10.1364/OE.22.016802


View Full Text Article

Enhanced HTML    Acrobat PDF (3578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A concept of a solid-state lighting engine for artwork-specific illumination with controlled photochemical safety is introduced. The engine is based on a tetrachromatic cluster of colored light-emitting diodes wirelessly controlled via an external smart device. By using an instantaneous dimming functionality, the driving software allows for maintaining the damage irradiance relevant to a particular type of photosensitive artwork material at a constant value, while varying the chromaticity and color rendition properties of the generated light. The effect of the constant damage irradiance on the visual impression from artworks is demonstrated for the lighting engine operating in three modes, such as selecting color temperature, tuning color saturating ability, and shifting chromaticity outside white light locus, respectively.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(330.1690) Vision, color, and visual optics : Color
(350.4600) Other areas of optics : Optical engineering
(350.5130) Other areas of optics : Photochemistry
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(160.5335) Materials : Photosensitive materials

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 5, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 23, 2014
Published: July 1, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Arūnas Tuzikas, Artūras Žukauskas, Rimantas Vaicekauksas, Andrius Petrulis, Pranciškus Vitta, and Michael Shur, "Artwork visualization using a solid-state lighting engine with controlled photochemical safety," Opt. Express 22, 16802-16818 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16802


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Thomson, The Museum Environment (Butterworth-Heinemann, 1986).
  2. C. Cuttle, Light for Art's Sake: Lighting for Artworks and Museum Displays (Butterworth-Heinemann, 2007).
  3. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41(10), 684–688 (1951). [CrossRef] [PubMed]
  4. W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3(1), 61–64 (1973). [CrossRef]
  5. R. H. Lafontaine, “Seeing through a yellow varnish: a compensating illumination system,” Stud. Conserv. 31(3), 97–102 (1986). [CrossRef]
  6. G. Thomson, “A new look at colour rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6(2-3), 49–70 (1961). [CrossRef]
  7. G. Thomson, “Annual exposure to light within museums,” Stud. Conserv. 12(1), 26–36 (1967). [CrossRef]
  8. B. H. Crawford, “Just perceptible colour differences in relation to level of illumination,” Stud. Conserv. 18(4), 159–166 (1973). [CrossRef]
  9. D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982). [CrossRef]
  10. Illuminating Engineering Society of North America, Museum and Art Gallery Lighting: A Recommended Practice (IESNA, 1996).
  11. Commission Internationale de l’Éclairage, “Control of damage to museum objects by optical radiation,” Pub. CIE 157, 2004.
  12. C. Cuttle, “A proposal to reduce the exposure to light of museum objects without reducing illuminance or the level of visual satisfaction of museum visitors,” J. Amer. Inst. Conserv. 39, 229–244 (2000).
  13. L. S. Harrison, Report on the Deteriorating Effects of Modern Light Sources (Metropolitan Museum of Art, 1953).
  14. G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).
  15. D. Saunders and J. Kirby, “Wavelength-dependent fading of artist’s pigments,” in Preventive Conservation Practice, Theory and Research, A. Roy and P. Smith, eds. (International Institute for Conservation of Historic and Artistic Works, London, 1994), pp. 190–194.
  16. C. Cuttle, “Lighting works of art for exhibition and conservation,” Lighting Res. Tech. 20(2), 43–53 (1988). [CrossRef]
  17. C. Cuttle, “Damage to museum objects due to light exposure,” Lighting Res. Tech. 28(1), 1–9 (1996). [CrossRef]
  18. M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004). [CrossRef] [PubMed]
  19. M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004). [CrossRef]
  20. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008). [CrossRef] [PubMed]
  21. P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006). [CrossRef] [PubMed]
  22. S. M. C. Nascimento and O. Masuda, “Best lighting for visual appreciation of artistic paintings—experiments with real paintings and real illumination,” J. Opt. Soc. Am. A 31(4), A214–A219 (2014). [CrossRef]
  23. A. A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).
  24. F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009). [CrossRef]
  25. Commission Internationale de l’Éclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.
  26. C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007). [CrossRef]
  27. M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011). [CrossRef]
  28. W. A. Thornton, “The high visual efficiency of prime color lamps,” Lighting Des. Appl. 5, 35–41 (1975).
  29. R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl. 36(5), 324–334 (2011). [CrossRef]
  30. P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010). [CrossRef] [PubMed]
  31. J. Druzik and B. Eshøj, “Museum lighting: its past and future development,” in Museum Microclimates, T. Padfield and K. Borchersen, eds. (National Museum of Denmark, Copenhagen, 2007), pp. 51–56.
  32. A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, 2002).
  33. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002). [CrossRef]
  34. I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006). [CrossRef]
  35. G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010). [CrossRef] [PubMed]
  36. P. Zhong, G. He, and M. Zhang, “Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED,” Opt. Express 20(S5Suppl 5), A684–A693 (2012). [CrossRef] [PubMed]
  37. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002). [CrossRef]
  38. O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37(3), 407–409 (2012). [CrossRef] [PubMed]
  39. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010). [CrossRef] [PubMed]
  40. D. Vazquez-Molini, A. Alvarez Fernandez-Balbuena, A. Garcia Botella, J. A. Herraez, M. Del Egido, and R. Ontañon, “Advanced LED lighting system applied to cultural heritage goods,” in Colour and Light in Architecture, P. Zennaro, ed. (Knemesi, Verona, 2010), pp. 341–348.
  41. R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011). [CrossRef]
  42. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Color-dulling solid-state sources of light,” Opt. Express 20(9), 9755–9762 (2012). [CrossRef] [PubMed]
  43. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008). [CrossRef]
  44. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010). [CrossRef]
  45. S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009). [CrossRef]
  46. F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011). [CrossRef]
  47. A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013). [CrossRef]
  48. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012). [CrossRef] [PubMed]
  49. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  50. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009). [CrossRef]
  51. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010). [CrossRef]
  52. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited