OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16847–16862

Single LP0,n mode excitation in multimode fibers

Nitin Bhatia, Kailash C. Rustagi, and Joseph John  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 16847-16862 (2014)
http://dx.doi.org/10.1364/OE.22.016847


View Full Text Article

Enhanced HTML    Acrobat PDF (4462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the transmission of a Single mode - Multimode -Multimode (SMm) fiber structure with the aim of exciting a single radial mode in the second multimode fiber. We show that by appropriate choice of the length of the central multimode fiber one can obtain > 90% of the total core power in a chosen mode. We also discuss methods of removing undesirable cladding and radiation modes and estimate tolerances for practical applications.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics

History
Original Manuscript: February 26, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: June 1, 2014
Published: July 2, 2014

Citation
Nitin Bhatia, Kailash C. Rustagi, and Joseph John, "Single LP0,n mode excitation in multimode fibers," Opt. Express 22, 16847-16862 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kw continuous-wave output power,” Opt. Express126088–6092 (2004). [CrossRef] [PubMed]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Rser, T. Schreiber, and A. Tnnermann, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14, 2715–2720 (2006). [CrossRef] [PubMed]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25, 442–444 (2000). [CrossRef]
  4. Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett.30, 2997–2999 (2005). [CrossRef] [PubMed]
  5. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding pumped ytterbium-doped helical-core fiber laser,” Opt. Lett.31, 226–228 (2006). [CrossRef] [PubMed]
  6. J. M. Sousa and O. G. Okhotnikov, “Multimode er-doped fiber for single-transverse-mode amplification,” Appl. Phys. Lett.74, 1528–1530 (1999). [CrossRef]
  7. X. Zhu, A. Schlzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett.33, 908–910 (2008). [CrossRef] [PubMed]
  8. X. Zhu, A. Schlzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express16, 16632–16645 (2008). [PubMed]
  9. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett.32, 748–750 (2007). [CrossRef] [PubMed]
  10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett.31, 1797–1799 (2006). [CrossRef] [PubMed]
  11. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber bragg grating and single mode - multimode - single mode fiber structure,” Opt. Lett.36, 2197–2199 (2011). [CrossRef] [PubMed]
  12. J. Villatoro and D. Monzn-Hernndez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol.24, 1409–1413 (2006). [CrossRef]
  13. O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp.49, 167–191 (2006). [CrossRef]
  14. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode multimode singlemode fiber structure,” J. Light-wave Technol.26, 512–519 (2008). [CrossRef]
  15. G. R. Hadley, “Wide-angle beam propagation using pade approximant operators,” Opt. Lett.17, 1426–1428 (1992). [CrossRef] [PubMed]
  16. C. L. Linslal, P. M. S. Mohan, A. Halder, and T. K. Gangopadhyay, “Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor,” Appl. Opt.51, 3445–3452 (2012). [CrossRef] [PubMed]
  17. Introduction to Fiber Optics (Cambridge University, 2011).
  18. X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron.15, 71–78 (2009). [CrossRef]
  19. D. Gloge, “Weakly guiding fibers,” Appl. Opt.10, 2252–2258 (1971). [CrossRef] [PubMed]
  20. V. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiber optic biosensor based on evanescent wave absorbance at 280nm,” Sens. Actuators, B143, 724 (2010). [CrossRef]
  21. R. Bharadwaj, V. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of e. coli at 280nm wavelength,” Biosens. Bioelectron.26, 3367 (2011). [CrossRef]
  22. X. Li, S. Lin, J. Liang, Y. Zhang, H. Oigawa, and T. Ueda, “Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic materials,” IEEE Photon. J.4, 155–162 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited