OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16889–16896

Numerical analysis of the sub-wavelength fabrication of MTMO grayscale photomasks by direct laser writing

Feng Xia, Xinzheng Zhang, Meng Wang, Sanming Yi, Qian Liu, and Jingjun Xu  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 16889-16896 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal-transparent-metallic-oxide (MTMO) grayscale photomasks fabricated by direct laser writing have been proposed in recent years. The fabrication mechanism is attributed to light-induced melt-oxidization. The temporal-spatial distribution of temperature fields of indium film-glass samples under a laser pulse have been calculated by the Finite-Difference Time-Domain method. The laser action area of the indium film is studied based on the oxidation theories and the absorbed laser power density distribution in molten indium films. The calculated average sub-wavelength fabrication diameter of 302 nm is consistent with the experimental fabrication size under a laser power of 6.0 - 8.0 mW.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(200.0200) Optics in computing : Optics in computing
(160.4236) Materials : Nanomaterials
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Laser Microfabrication

Original Manuscript: April 3, 2014
Revised Manuscript: June 1, 2014
Manuscript Accepted: June 18, 2014
Published: July 2, 2014

Feng Xia, Xinzheng Zhang, Meng Wang, Sanming Yi, Qian Liu, and Jingjun Xu, "Numerical analysis of the sub-wavelength fabrication of MTMO grayscale photomasks by direct laser writing," Opt. Express 22, 16889-16896 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004). [CrossRef] [PubMed]
  2. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008). [CrossRef]
  3. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997). [CrossRef]
  4. G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005). [CrossRef]
  5. M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001). [CrossRef]
  6. Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).
  7. G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003). [CrossRef]
  8. J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004). [CrossRef]
  9. G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004). [CrossRef]
  10. D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).
  11. G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).
  12. J. M. Dykes and G. H. Chapman, “Optical characterization of the mask writing process in bimetallic grayscale photomasks,” Proc. SPIE 7201, 72010S1 (2009).
  13. G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014). [CrossRef]
  14. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009). [CrossRef] [PubMed]
  15. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34(18), 2820–2822 (2009). [CrossRef] [PubMed]
  16. C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18(3), 2621–2631 (2010). [CrossRef] [PubMed]
  17. Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011). [CrossRef] [PubMed]
  18. J. Zhang, C. Guo, Y. Wang, J. Miao, Y. Tian, and Q. Liu, “Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks,” Appl. Opt. 51(27), 6606–6611 (2012). [CrossRef] [PubMed]
  19. D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).
  20. D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991). [CrossRef]
  21. V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999). [CrossRef]
  22. Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998). [CrossRef]
  23. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials, (CRC Press, 2010).
  24. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1998).
  25. R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973). [CrossRef]
  26. C. Guo, “Study on the structure and function of metal nano thin film by laser direct writing,” Ph.D. thesis (Graduate University of Chinese Academy of Sciences, Beijing 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited