OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 16945–16955

Image transmission through dynamic scattering media by single-pixel photodetection

Enrique Tajahuerce, Vicente Durán, Pere Clemente, Esther Irles, Fernando Soldevila, Pedro Andrés, and Jesús Lancis  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 16945-16955 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Smart control of light propagation through highly scattering media is a much desired goal with major technological implications. Since interaction of light with highly scattering media results in partial or complete depletion of ballistic photons, it is in principle impossible to transmit images through distances longer than the extinction length. Nevertheless, different methods for image transmission, focusing, and imaging through scattering media by means of wavefront control have been published over the past few years. In this paper we show that single-pixel optical systems, based on compressive detection, can also overcome the fundamental limitation imposed by multiple scattering to successfully transmit information. But, in contrast with the recently introduced schemes that use the transmission matrix technique, our approach does not require any a-priori calibration process that ultimately makes the present method suitable to use with dynamic scattering media. This represents an advantage over previous methods that rely on optical feedback wavefront control, especially for short speckle decorrelation times.

© 2014 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(230.6120) Optical devices : Spatial light modulators
(290.4210) Scattering : Multiple scattering
(110.1758) Imaging systems : Computational imaging

ToC Category:

Original Manuscript: February 24, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: May 27, 2014
Published: July 2, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Enrique Tajahuerce, Vicente Durán, Pere Clemente, Esther Irles, Fernando Soldevila, Pedro Andrés, and Jesús Lancis, "Image transmission through dynamic scattering media by single-pixel photodetection," Opt. Express 22, 16945-16955 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wenner, “The most transparent research,” Nature Medicine 15, 1106–1109 (2009). [CrossRef] [PubMed]
  2. K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature (London) 497, 332–337 (2013). [CrossRef]
  3. M. J. Booth, D. Dbarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23, 22 (2012). [CrossRef]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012). [CrossRef]
  5. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  6. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011). [CrossRef]
  7. R. T. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep.3, (2013). [CrossRef] [PubMed]
  8. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011). [CrossRef]
  9. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “ Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447–455 (2011). [CrossRef] [PubMed]
  10. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque materia,” Nat. Commun. 1, 1038(2010). [CrossRef]
  11. J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010). [CrossRef]
  12. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature (London) 491, 232–234 (2012). [CrossRef]
  13. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012). [CrossRef] [PubMed]
  14. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919–924 (2013). [CrossRef]
  15. M. Plöschner, B. Straka, K. Dholakia, and T. Cizmár, ”GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22, 2933–2947 (2014). [CrossRef] [PubMed]
  16. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009). [CrossRef]
  17. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012). [CrossRef]
  18. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-Pixel Imaging via Compressive Sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008). [CrossRef]
  19. F. Magalhães, F. M. Araújo, M. V. Correia, M. Abolbashari, and F. Farahi, “ Active illumination single-pixel camera based on compressive sensing,” Appl. Opt. 50, 405–414 (2011). [CrossRef] [PubMed]
  20. E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  21. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340, 844–847 (2013). [CrossRef] [PubMed]
  22. G. A. Howland and J. C. Howell, “Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera,” Phys. Rev. X 3, 011013 (2013).
  23. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012). [CrossRef] [PubMed]
  24. J. Hunt, T. Discroll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339, 310–313 (2013). [CrossRef] [PubMed]
  25. Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical Imaging With the Use of a Scattering Lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
  26. T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012). [CrossRef]
  27. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and G. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  28. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  29. E. J. Candes, http://www.stat.stanford.edu/candes/l1magic .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited