OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17006–17015

An efficient plate heater with uniform surface temperature engineered with effective thermal materials

Yichao Liu, Wei Jiang, Sailing He, and Yungui Ma  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17006-17015 (2014)
http://dx.doi.org/10.1364/OE.22.017006


View Full Text Article

Enhanced HTML    Acrobat PDF (2653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered thermal materials and show desired heating behaviors consistent with numerical simulations. Unique applications for these devices can be envisioned where stringent temperature uniformity and a compact heat source are both demanded.

© 2014 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 4, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: June 18, 2014
Published: July 3, 2014

Citation
Yichao Liu, Wei Jiang, Sailing He, and Yungui Ma, "An efficient plate heater with uniform surface temperature engineered with effective thermal materials," Opt. Express 22, 17006-17015 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  7. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007). [CrossRef] [PubMed]
  8. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008). [CrossRef]
  9. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009). [CrossRef]
  10. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009). [CrossRef] [PubMed]
  11. Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012). [CrossRef] [PubMed]
  12. Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013). [CrossRef] [PubMed]
  13. H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010). [CrossRef] [PubMed]
  14. H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009). [CrossRef] [PubMed]
  15. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009). [CrossRef] [PubMed]
  16. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  17. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012). [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008). [CrossRef] [PubMed]
  19. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  20. J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  21. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  22. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  23. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]
  24. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  25. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010). [CrossRef] [PubMed]
  26. N. Wang, Y. G. Ma, R. F. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21(5), 5941–5948 (2013). [CrossRef] [PubMed]
  27. F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011). [CrossRef] [PubMed]
  28. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef] [PubMed]
  29. H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011). [CrossRef]
  30. T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012). [CrossRef]
  31. Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013). [CrossRef] [PubMed]
  32. X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef] [PubMed]
  33. B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011). [CrossRef] [PubMed]
  34. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012). [CrossRef] [PubMed]
  35. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010). [CrossRef] [PubMed]
  36. L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013). [CrossRef]
  37. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007). [CrossRef]
  38. H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007). [CrossRef]
  39. S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011). [CrossRef] [PubMed]
  40. L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013). [CrossRef]
  41. Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011). [CrossRef] [PubMed]
  42. C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008). [CrossRef]
  43. T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008). [CrossRef]
  44. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006). [CrossRef]
  45. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008). [CrossRef] [PubMed]
  46. A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012). [CrossRef] [PubMed]
  47. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008). [CrossRef] [PubMed]
  48. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012). [CrossRef] [PubMed]
  49. T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013). [CrossRef] [PubMed]
  50. T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014). [CrossRef] [PubMed]
  51. H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014). [CrossRef] [PubMed]
  52. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012). [CrossRef] [PubMed]
  53. Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013). [CrossRef]
  54. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013). [CrossRef] [PubMed]
  55. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010). [CrossRef] [PubMed]
  56. Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012). [CrossRef] [PubMed]
  57. M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011). [CrossRef] [PubMed]
  58. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012). [CrossRef] [PubMed]
  59. A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011). [CrossRef]
  60. M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013). [CrossRef] [PubMed]
  61. M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett. 110(2), 025902 (2013). [CrossRef] [PubMed]
  62. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006). [CrossRef] [PubMed]
  63. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000). [CrossRef]
  64. W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013). [CrossRef]
  65. Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013). [CrossRef]
  66. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  67. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010). [CrossRef] [PubMed]
  68. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009). [CrossRef] [PubMed]
  69. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011). [CrossRef] [PubMed]
  70. H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008). [CrossRef]
  71. L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (620 KB)     
» Media 2: MOV (360 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited