OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17050–17062

Multiwavelength super-structured Bragg grating laser for tunable repetition rate mode-locked operation

Alexandre D. Simard, Michael J. Strain, Vincenzo Pusino, Marc Sorel, and Sophie LaRochelle  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17050-17062 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multiwavelength laser based on a super-structured Bragg grating is designed and fabricated on multiquantum well AlGaInAs-InP. This laser exhibits phase locking via mutual injection of the neighboring cavities assisted by four wave mixing. We present optical and electrical characterization of its emission regimes showing a complex dynamic behavior. More specifically, this paper focuses on a pulsed regime with a quasi-continuous tunable repetition rate from 32 GHz to 49 GHz.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(220.1230) Optical design and fabrication : Apodization
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 13, 2014
Revised Manuscript: June 19, 2014
Manuscript Accepted: June 19, 2014
Published: July 3, 2014

Alexandre D. Simard, Michael J. Strain, Vincenzo Pusino, Marc Sorel, and Sophie LaRochelle, "Multiwavelength super-structured Bragg grating laser for tunable repetition rate mode-locked operation," Opt. Express 22, 17050-17062 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4(11), 737–758 (2005). [CrossRef]
  2. M. Attygalle, C. Lim, and A. Nirmalathas, “Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser,” J. Lightwave Technol. 23(1), 295–303 (2005). [CrossRef]
  3. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol. 24(1), 404–410 (2006). [CrossRef]
  4. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010). [CrossRef]
  5. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984). [CrossRef]
  6. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  7. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011). [CrossRef] [PubMed]
  8. J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005). [CrossRef]
  9. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000). [CrossRef]
  10. A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006). [CrossRef]
  11. X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008). [CrossRef]
  12. K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012). [CrossRef]
  13. F. Wang, “Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter,” Opt. Laser Technol. 43(4), 848–851 (2011). [CrossRef]
  14. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006). [CrossRef]
  15. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006). [CrossRef]
  16. C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
  17. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012). [CrossRef]
  18. J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008). [CrossRef]
  19. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004). [CrossRef]
  20. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995). [CrossRef]
  21. R. Slavik, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry-Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21(4), 1059–1065 (2003). [CrossRef]
  22. R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004). [CrossRef]
  23. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006). [CrossRef]
  24. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48(6), 4758–4767 (1993). [CrossRef] [PubMed]
  25. A. D. Simard and S. LaRochelle, “Semi-analytical modeling of distributed phase-shifts applied on chirped fiber Bragg gratings,” J. Lightwave Technol. 30(1), 184–191 (2012). [CrossRef]
  26. G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007). [CrossRef]
  27. S. Pereira and S. Larochelle, “Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers,” Opt. Express 13(6), 1906–1915 (2005). [CrossRef] [PubMed]
  28. G. Brochu, S. LaRochelle, and R. Slavik, “Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Perot fiber lasers,” J. Lightwave Technol. 23(1), 44–53 (2005). [CrossRef]
  29. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013). [CrossRef]
  30. J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007). [CrossRef]
  31. M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2. [CrossRef]
  32. P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011). [CrossRef]
  33. M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010). [CrossRef]
  34. M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008). [CrossRef]
  35. M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011). [CrossRef]
  36. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited