OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17099–17106

Three-dimensional photonic crystals created by single-step multi-directional plasma etching

Katsuyoshi Suzuki, Keisuke Kitano, Kenji Ishizaki, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17099-17106 (2014)
http://dx.doi.org/10.1364/OE.22.017099


View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

© 2014 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: May 15, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 25, 2014
Published: July 3, 2014

Citation
Katsuyoshi Suzuki, Keisuke Kitano, Kenji Ishizaki, and Susumu Noda, "Three-dimensional photonic crystals created by single-step multi-directional plasma etching," Opt. Express 22, 17099-17106 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000). [CrossRef] [PubMed]
  2. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004). [CrossRef] [PubMed]
  3. J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 microm,” Opt. Lett. 24(1), 49–51 (1999). [CrossRef] [PubMed]
  4. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004). [CrossRef] [PubMed]
  5. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2(11), 688–692 (2008). [CrossRef]
  6. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009). [CrossRef] [PubMed]
  7. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013). [CrossRef]
  8. S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). [CrossRef] [PubMed]
  9. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001). [CrossRef] [PubMed]
  10. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004). [CrossRef] [PubMed]
  11. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008). [CrossRef]
  12. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011). [CrossRef] [PubMed]
  13. C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystals operating at optical wavelengths,” Phys. Scr. T T68, 17–20 (1996). [CrossRef]
  14. A. Chelnokov, S. David, K. Wang, F. Marty, and J.-M. Lourtioz, “Fabrication of 2-D and 3-D silicon photonic crystal by deep etching,” IEEE J. Sel. Top. Quantum Electron. 8(4), 919–927 (2002). [CrossRef]
  15. S. Takahashi, M. Okano, M. Imada, and S. Noda, “Three-dimensional photonic crystals based on double-angled etching and wafer-fusion technique,” Appl. Phys. Lett. 89(12), 123106 (2006). [CrossRef]
  16. R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B 26(3), 973–977 (2008). [CrossRef]
  17. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009). [CrossRef] [PubMed]
  18. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67(17), 2295–2298 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited