OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17116–17121

Plasmonic nano-comb structures for efficient large-area second harmonic generation

Hongchul Sim, Hee-Jin Lim, Jung-Hwan Song, Myung-Ki Kim, and Yong-Hee Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17116-17121 (2014)
http://dx.doi.org/10.1364/OE.22.017116


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate plasmonic nano-comb (PNC) structures for efficient large-area second-harmonic generation (SHG). The PNCs are made of 250 nm-thick gold film and have equally-spaced 30 nm-slits filled with ployvinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)). The PNC with 1.0 μm-spacing couples resonantly with 1.56 μm 100-fs laser beams. For the 1.0 μm-spacing PNCs under the fixed-pump-power condition, the nonlinear SHG power remains almost independent of the pump diameter ranging from 2 μm to 6 μm. The SHG power from the resonant PNC is measured to be 8 times larger than that of the single-nano-gap metallic structure, when the pump beam is tightly-focused to 2 μm in diameter in both cases. This relative enhancement of the total nonlinear SHG signal power reaches up to >200 when the pump beam diameter is increased to 6 μm. We attribute this unusual phenomenon to the resonant coupling of the finite-size pump wave with the finite-size one-dimensional plasmonic mode.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: March 28, 2014
Revised Manuscript: June 24, 2014
Manuscript Accepted: June 25, 2014
Published: July 7, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Hongchul Sim, Hee-Jin Lim, Jung-Hwan Song, Myung-Ki Kim, and Yong-Hee Lee, "Plasmonic nano-comb structures for efficient large-area second harmonic generation," Opt. Express 22, 17116-17121 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17116


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011). [CrossRef]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  3. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009). [CrossRef]
  4. W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009). [CrossRef]
  5. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  6. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  7. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  8. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011). [CrossRef] [PubMed]
  9. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004). [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005). [CrossRef]
  11. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005). [CrossRef] [PubMed]
  12. N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013). [CrossRef]
  13. B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000). [CrossRef]
  14. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  15. C. Forestiere, A. Capretti, and G. Miano, “Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources,” J. Opt. Soc. Am. B 30(9), 2355–2364 (2013). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics Second Edition (Academic, 2003), Chap. 2.
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 9.
  18. G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited