OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17135–17146

Manipulating intensity and phase distribution of composite Laguerre-Gaussian beams

G. Parisi, E. Mari, F. Spinello, F. Romanato, and F. Tamburini  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17135-17146 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method to manipulate the intensity and phase distributions of a beam with non-zero orbital angular momentum (OAM). We investigate the superposition of coherent consecutive OAM modes, with concordant topological charges values, showing that it is possible to predict and control the phase and the radial and angular dimension of the resulting beam by acting on the number of superposed modes (N) and on their minimum value of the OAM ( m min ). A general analysis from the Wigner function formalism is adopted for the geometric characterization of the beam.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(080.2468) Geometric optics : First-order optics

ToC Category:
Physical Optics

Original Manuscript: April 4, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: June 21, 2014
Published: July 7, 2014

G. Parisi, E. Mari, F. Spinello, F. Romanato, and F. Tamburini, "Manipulating intensity and phase distribution of composite Laguerre-Gaussian beams," Opt. Express 22, 17135-17146 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92(14), 143905 (2004). [CrossRef] [PubMed]
  3. T. Ongarello, G. Parisi, D. Garoli, E. Mari, P. Zilio, and F. Romanato, “Focusing dynamics on circular distributed tapered metallic waveguides by means of plasmonic vortex lenses,” Opt. Lett. 37(21), 4516–4518 (2012). [CrossRef] [PubMed]
  4. A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), S47–S51 (2002). [CrossRef]
  5. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010). [CrossRef] [PubMed]
  6. E. Mari, F. Tamburini, G. A. Swartzlander, A. Bianchini, C. Barbieri, F. Romanato, and B. Thidé, “Sub-Rayleigh optical vortex coronagraphy,” Opt. Express 20(3), 2445–2451 (2012). [CrossRef] [PubMed]
  7. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express 17(12), 9818–9827 (2009). [CrossRef] [PubMed]
  8. A. M. C. Aguirre and T. Alieva, “Orbital angular momentum Density of beam given as superposition of Hermite-Laguerre-Guass function,” in PIERS Proceedings, (Marrakesh, Marocco, 2011), pp. 250–254.
  9. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optic singularities in coaxial superposition of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A 27(12), 2602–2612 (2010). [CrossRef]
  10. I. D. Maleev and G. A. Swartzlander., “Composite optical vortices,” J. Opt. Soc. Am. B 20(6), 1169–1176 (2003). [CrossRef]
  11. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, 2007).
  12. W. H. Carter, “Spot size and divergence for Hermite Gaussian beams of any order,” Appl. Opt. 19(7), 1027–1029 (1980). [CrossRef] [PubMed]
  13. R. L. Phillips and L. C. Andrews, “Spot size and divergence for Laguerre Gaussian beams of any order,” Appl. Opt. 22(5), 643–644 (1983). [CrossRef] [PubMed]
  14. T. Alieva, C. Alejandro, and M. J. Bastiaans, “Mathematical formalism in wave optics,” in Mathematical Optics, V. Lakshminarayanan, M. L. Calvo, T. Alieva ed. (CRC Press, 2013).
  15. D. Dragoman, “The Wigner distribution function in optic and optoelectronics,” Prog. Optics 37, 1–56 (1997). [CrossRef]
  16. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10(1), 95–109 (1993). [CrossRef]
  17. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12(3), 560–569 (1995). [CrossRef]
  18. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian-Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36(8), 3868–3880 (1987). [CrossRef] [PubMed]
  19. M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Adv. Opt. Photon. 3(4), 272–365 (2011). [CrossRef]
  20. Y. A. Anan’ev and A. Y. Bekshaev, “Theory of intensity moments for arbitrary light beams,” Opt. Spectrosc. 76, 558–568 (1994).
  21. A. Y. Bekshaev, “Intensity moments of a laser beam formed by superposition of Hermite-Gaussian modes,” Fotoelektronika 8, 2–13 (1999).
  22. R. Simon and G. S. Agarwal, “Wigner representation of Laguerre--Gaussian beams,” Opt. Lett. 25(18), 1313–1315 (2000). [CrossRef] [PubMed]
  23. A. Camara and T. Alieva, in PIERS Proceedings, (Cambrige, MA, 2010), pp. 505–508.
  24. J. Alda, “ Laser and Gaussian Beam Propagation and Transformation,” in Encyclopedia of Optical Engineering, R. G. Driggers ed. (CRC Press, 2003).
  25. D. Judge, “On the uncertainty relation forLzϕ, ” Phys. Lett. 5(3), 189 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited