OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17147–17157

Experimental observation of moiré angles in parallax barrier 3D displays

Vladimir Saveljev and Sung-Kyu Kim  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17147-17157 (2014)
http://dx.doi.org/10.1364/OE.22.017147


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Angles of visible moiré patterns are observed experimentally. Experiments were made across the angular range 0 - 90° in a wide range of parameters. Two kinds of clusterization were observed, ray and discrete. In rational cells (LCD pixels), the moiré patterns appear at a few fixed discrete angles. The list of preferable moiré-less angles is presented basing on the experimental data; preferable areas in the parameter space are found. The problem of minimization of the moiré effect is formulated as the Diophantine inequality with complex coefficients. The classification of moiré angles basing on the probability of the moiré effect can be practically useful.

© 2014 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2040) Instrumentation, measurement, and metrology : Displays
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(230.4170) Optical devices : Multilayers

ToC Category:
Imaging Systems

History
Original Manuscript: April 8, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 23, 2014
Published: July 7, 2014

Citation
Vladimir Saveljev and Sung-Kyu Kim, "Experimental observation of moiré angles in parallax barrier 3D displays," Opt. Express 22, 17147-17157 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Amidror, The Theory of the Moiré Phenomenon, Volume I: Periodic Layers and Volume II: Aperiodic Layers (Springer, 2007–2009).
  2. K. Patorski and M. Kujawinska, Handbook of the moiré fringe technique (Elsiver Science Publisher, 1993).
  3. K. Creath and J. C. Wyant, “Moiré and fringe projection techniques,” in Optical Shop Testing, 2nd (John Wiley & Sons, 1995), Chap. 16.
  4. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011). [CrossRef] [PubMed]
  5. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009). [CrossRef]
  6. L. Kong, G. Jin, and T. Wang, “Analysis of Moiré minimization in autostereoscopic parallax displays,” Opt. Express 21, 26068–26079 (2013).
  7. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006). [CrossRef]
  8. V. Saveljev, J.-Y. Son, J.-H. Chun, K.-D. Kwack, and K.-H. Cha, “About a moiré-less condition for non-square grids,” J. Displ. Technol. 4(3), 332–339 (2008). [CrossRef]
  9. S. Rasouli and M. T. Tavassoly, “Analysis of the moiré pattern of moving periodic structures using reciprocal vector approach,” J. Phys. Conf. Ser. 350, 012032 (2012). [CrossRef]
  10. G. Strang, Computational Science and Engineering (Wellesley-Cambridge University, 2007), Chap. 4.1.
  11. V. Saveljev and S.-K. Kim, “Theoretical estimation of moiré effect using spectral trajectories,” Opt. Express 21(2), 1693–1712 (2013). [CrossRef] [PubMed]
  12. V. Saveljev and S.-K. Kim, “Estimation of moiré patterns using spectral trajectories in the complex plane,” Comput. Technol. Appl. 3, 353–360 (2012).
  13. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11(1), 246–249 (1994). [CrossRef] [PubMed]
  14. R. C. Baker, Diophantine Inequalities (Oxford University Press, 1986).
  15. H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities (Cambridge University, 2005), Chap. 20.
  16. V. Saveljev and S.-K. Kim, “Simulation and measurement of moiré patterns at finite distance,” Opt. Express 20(3), 2163–2177 (2012). [CrossRef] [PubMed]
  17. Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009). [CrossRef] [PubMed]
  18. S. S. Deshpande, “Screen angle combinations and effect on print quality parameters,” Int. J.Adv.Eng.Technol. II, 480–482 (2011).
  19. P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Full optical characterization of auto-stereoscopic 3D displays using local viewing angle and imaging measurements,” Proc. SPIE 8288, 82880S (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited