OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17172–17186

Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation

Chao Zuo, Qian Chen, Lei Huang, and Anand Asundi  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17172-17186 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transport of intensity equation (TIE) has long been recognized as a quantitative method for phase retrieval and phase contrast imaging. However, it is shown that the most widely accepted fast Fourier transform (FFT) based solutions do not provide an exact solution to the TIE in general. The root of the problem lies in the so-called “Teague’s assumption” that the transverse flux is considered to be a conservative field, which cannot be satisfied for a general object. In this work, we present the theoretical analysis of the phase discrepancy owing to the Teague’s assumption, and derive the necessary and sufficient conditions for the FFT-based solution to coincide with the exact phase. An iterative algorithm is then proposed aiming to compensate such phase discrepancy in a simple yet effective manner.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Imaging Systems

Original Manuscript: May 12, 2014
Revised Manuscript: June 23, 2014
Manuscript Accepted: June 23, 2014
Published: July 7, 2014

Chao Zuo, Qian Chen, Lei Huang, and Anand Asundi, "Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation," Opt. Express 22, 17172-17186 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Reed Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  2. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998). [CrossRef]
  3. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35(13), 2239–2241 (2010). [CrossRef] [PubMed]
  4. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27(7), 1223–1225 (1988). [CrossRef] [PubMed]
  5. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996). [CrossRef] [PubMed]
  6. K. Ishizuka and B. Allman, “Phase measurement of atomic resolution image using transport of intensity equation,” J. Electron Microsc. (Tokyo) 54(3), 191–197 (2005). [CrossRef] [PubMed]
  7. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998). [CrossRef] [PubMed]
  8. A. Orth and K. B. Crozier, “Light field moment imaging,” Opt. Lett. 38(15), 2666–2668 (2013). [CrossRef] [PubMed]
  9. C. Zuo, Q. Chen, and A. Asundi, “Light field moment imaging: comment,” Opt. Lett. 39(3), 654 (2014). [CrossRef] [PubMed]
  10. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  11. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013). [CrossRef] [PubMed]
  12. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013). [CrossRef] [PubMed]
  13. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12(9), 1942–1946 (1995). [CrossRef]
  14. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  15. C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014). [CrossRef] [PubMed]
  16. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997). [CrossRef]
  17. J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011). [CrossRef]
  18. J. A. Ferrari, G. A. Ayubi, J. L. Flores, and C. D. Perciante, “Transport of intensity equation: Validity limits of the usually accepted solution,” Opt. Commun. 318, 133–136 (2014). [CrossRef]
  19. M. Testorf, B. Hennelly, and J. Ojeda-Castañeda, Phase-Space Optics: Fundamentals and Applications: Fundamentals and Applications: Fundamentals and Applications (McGraw Hill Professional, 2009).
  20. R. Winston and W. T. Welford, “Geometrical vector flux and some new nonimaging concentrators,” J. Opt. Soc. Am. 69(4), 532–536 (1979). [CrossRef]
  21. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1227–1238 (1986). [CrossRef]
  22. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,” P IEEE 80(4), 520–538 (1992). [CrossRef]
  23. H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics (Cambridge University, 1999).
  24. L. J. Allen, H. M. Faulkner, K. A. Nugent, M. P. Oxley, and D. Paganin, “Phase retrieval from images in the presence of first-order vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 037602 (2001). [CrossRef] [PubMed]
  25. A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of Intensity Phase Retrieval of Arbitrary Wave Fields Including Vortices,” Phys. Rev. Lett. 111(17), 173902 (2013). [CrossRef] [PubMed]
  26. S. R. Crouch and J. D. Ingle, Spectrochemical Analysis (Prentice Hall, 1988).
  27. V. Berinde, “Approximating fixed points of weak contractions using the Picard iteration,” in Nonlinear Analysis Forum (2004), 43–54.
  28. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004). [CrossRef] [PubMed]
  29. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013). [CrossRef] [PubMed]
  30. A. J. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review,” P IEEE 65(11), 1565–1596 (1977). [CrossRef]
  31. J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014). [CrossRef] [PubMed]
  32. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  33. T. Gureyev, C. Raven, A. Snigirev, I. Snigireva, and S. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D Appl. Phys. 32(5), 563–567 (1999). [CrossRef]
  34. J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited