OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17207–17215

Generation of cylindrical vector vortex beams by two cascaded metasurfaces

Xunong Yi, Xiaohui Ling, Zhiyou Zhang, Ying Li, Xinxing Zhou, Yachao Liu, Shizhen Chen, Hailu Luo, and Shuangchun Wen  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17207-17215 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple and efficient method to generate any cylindrical vector vortex (CVV) beams based on two cascaded metasurfaces. The metasurface works as a space-variant Panchratnam-Berry phase element and can produce any desirable vortex phase and vector polarization. The first metasurface is used to switch the sign of topological charges associated with vortex, and the second metasurface is applied to manipulate the local polarization. This method allows us to simultaneously manipulate polarization and phase of the CVV beams.

© 2014 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

Original Manuscript: April 10, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: June 4, 2014
Published: July 8, 2014

Xunong Yi, Xiaohui Ling, Zhiyou Zhang, Ying Li, Xinxing Zhou, Yachao Liu, Shizhen Chen, Hailu Luo, and Shuangchun Wen, "Generation of cylindrical vector vortex beams by two cascaded metasurfaces," Opt. Express 22, 17207-17215 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  2. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  3. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002). [CrossRef] [PubMed]
  4. R. Dorn, S Qubis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  5. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef] [PubMed]
  6. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007). [CrossRef] [PubMed]
  7. D. Deng and Q. Guo, “Analytical vectorial structure of radially polarized light beams,” Opt. Lett. 32, 2711–2713 (2007). [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010). [CrossRef] [PubMed]
  9. H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39, 630–633 (2014). [CrossRef] [PubMed]
  10. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). [CrossRef]
  11. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901 (2003). [CrossRef] [PubMed]
  12. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81, 053813 (2010). [CrossRef]
  13. A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Classical and quantum properties of cylindrically polarized states of light,” Opt. Express 19, 9714–9736 (2011). [CrossRef] [PubMed]
  14. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107, 053601 (2011). [CrossRef]
  15. Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104, 191110 (2014). [CrossRef]
  16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  17. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011). [CrossRef]
  18. Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38, 932–934 (2013). [CrossRef] [PubMed]
  19. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012). [CrossRef] [PubMed]
  20. N. K. Viswanathan and V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34, 1189–1191 (2009). [CrossRef] [PubMed]
  21. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36, 3179–3181. (2011). [CrossRef] [PubMed]
  22. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208–4220 (2006). [CrossRef] [PubMed]
  23. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51, 2925–2934 (2012). [CrossRef] [PubMed]
  24. N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012). [CrossRef] [PubMed]
  25. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013). [CrossRef] [PubMed]
  26. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011). [CrossRef]
  27. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  28. U. Levy, C. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004). [CrossRef] [PubMed]
  29. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008). [CrossRef] [PubMed]
  30. A. Niv, Y. Gorodetski, V. Kleiner, and E. Hasman, “Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures,” Opt. Lett. 33, 2910–2912 (2008). [CrossRef] [PubMed]
  31. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  32. X. Ling, X. Zhou, H. Luo, and S. Wen, “Steering far-field spin-dependent splitting of light by inhomogeneous anisotropic media,” Phys. Rev. A 86, 053824 (2012). [CrossRef]
  33. L. Marrucci, E. Karimi, S. Slussarenko, B Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (University Press, Cambridge, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited