OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17216–17226

Closed-loop adaptive optics system with a single liquid crystal spatial light modulator

Kainan Yao, Jianli Wang, Xinyue Liu, and Wei Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17216-17226 (2014)
http://dx.doi.org/10.1364/OE.22.017216


View Full Text Article

Enhanced HTML    Acrobat PDF (2087 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a closed-loop dynamic holographic adaptive optics system. This system can be realized via one liquid crystal spatial light modulator and one CCD camera. The liquid crystal spatial light modulator is used as the wavefront sensor and corrector, as well as imaging element. CCD detects the spots at holographic image plane and at focal plane of imaging channel simultaneously. The basic principle of the system is introduced first, and then the numerical analysis is presented. On this basis, we report a practical implementation of the dynamic holographic adaptive optics system. The results show that a rapid increase of Strehl ratio and improved image quality at focal plane for deliberately introduced aberrations can be achieved, verifying the feasibility of the system.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.1000) Holography : Aberration compensation
(090.1760) Holography : Computer holography
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Adaptive Optics

History
Original Manuscript: April 22, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 27, 2014
Published: July 8, 2014

Citation
Kainan Yao, Jianli Wang, Xinyue Liu, and Wei Liu, "Closed-loop adaptive optics system with a single liquid crystal spatial light modulator," Opt. Express 22, 17216-17226 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998), pp. 1–25.
  2. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wavefront sensor: a theoretical analysis,” J. Opt. Soc. Am. A17(6), 1098–1107 (2000). [CrossRef]
  3. M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett.25(15), 1083–1085 (2000). [CrossRef] [PubMed]
  4. F. Ghebremichael, G. P. Andersen, and K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt.47(4), A62–A69 (2008). [CrossRef] [PubMed]
  5. G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng.48(8), 085801 (2009). [CrossRef]
  6. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt.48(33), 6458–6465 (2009). [CrossRef] [PubMed]
  7. R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng.46(6), 428–439 (2008). [CrossRef]
  8. C. Liu, F. Xi, H. Ma, S. Huang, and Z. Jiang, “Modal wavefront sensor based on binary phase-only multiplexed computer-generated hologram,” Appl. Opt.49(27), 5117–5124 (2010). [CrossRef] [PubMed]
  9. S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Appl. Opt.51(9), 1318–1327 (2012). [CrossRef] [PubMed]
  10. S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt.51(25), 6268–6274 (2012). [CrossRef] [PubMed]
  11. A. D. Corbett, T. D. Wilkinson, J. J. Zhong, and L. Diaz-Santana, “Designing a holographic modal wavefront sensor for the detection of static ocular aberrations,” J. Opt. Soc. Am. A24(5), 1266–1275 (2007). [CrossRef] [PubMed]
  12. F. Feng, I. H. White, and T. D. Wilkinson, “Aberration Correction for Free Space Optical Communications Using Rectangular Zernike Modal Wavefront Sensing,” J. Lightwave Technol.32(6), 1239–1245 (2014). [CrossRef]
  13. A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol.2, 433–437 (2013).
  14. G. Andersen, P. Gelsinger-Austin, R. Gaddipati, P. Gaddipati, and F. Ghebremichael, “Fast, compact, autonomous holographic adaptive optics,” Opt. Express22(8), 9432–9441 (2014). [CrossRef] [PubMed]
  15. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express12(26), 6403–6409 (2004). [CrossRef] [PubMed]
  16. J. Munch and R. Wuerker, “Holographic technique for correcting aberrations in a telescope,” Appl. Opt.28(7), 1312–1317 (1989). [CrossRef] [PubMed]
  17. G. Andersen and R. Knize, “A high resolution, holographically corrected microscope with a Fresnel lens objective at large working distances,” Opt. Express2(13), 546–551 (1998). [CrossRef] [PubMed]
  18. R. Martínez-Cuenca, V. Durán, J. Arines, J. Ares, Z. Jaroszewicz, S. Bará, L. Martínez-León, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett.36(18), 3702–3704 (2011). [CrossRef] [PubMed]
  19. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express15(23), 15287–15292 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (12192 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited