OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17281–17291

Phase retrieval through a one–dimensional ptychographic engine

Fabio A. Vittoria, Paul C. Diemoz, Marco Endrizzi, Liberato De Caro, Ulrich H. Wagner, Christoph Rau, Ian K. Robinson, and Alessandro Olivo  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17281-17291 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ptychographic techniques are currently the subject of increasing scientific interest due to their capability to retrieve the complex transmission function of an object at very high resolution. However, they impose a substantial burden in terms of acquisition time and dimension of the scanned area, which limits the range of samples that can be studied. We have developed a new method that combines the ptychographic approach in one direction with Fresnel propagation in the other by employing a strongly asymmetric probe. This enables scanning the sample in one direction only, substantially reducing exposure times while covering a large field of view. This approach sacrifices ptychographic–related resolution in one direction, but removes any limitation on the probe dimension in the direction orthogonal to the scanning, enabling the scan of relatively large objects without compromising exposure times.

© 2014 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.1650) Imaging systems : Coherence imaging
(180.7460) Microscopy : X-ray microscopy

ToC Category:
Image Processing

Original Manuscript: March 27, 2014
Revised Manuscript: June 2, 2014
Manuscript Accepted: June 2, 2014
Published: July 9, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Fabio A. Vittoria, Paul C. Diemoz, Marco Endrizzi, Liberato De Caro, Ulrich H. Wagner, Christoph Rau, Ian K. Robinson, and Alessandro Olivo, "Phase retrieval through a one–dimensional ptychographic engine," Opt. Express 22, 17281-17291 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  2. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003). [CrossRef]
  3. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008). [CrossRef]
  4. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009). [CrossRef] [PubMed]
  5. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm,” Ultramicroscopy 109, 1256–1262 (2009). [CrossRef] [PubMed]
  6. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004). [CrossRef]
  7. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002). [CrossRef] [PubMed]
  8. M. Krenkel, M. Bartels, and T. Salditt, “Transport of intensity phase reconstruction to solve the twin image problem in holographic x–ray imaging,” Opt. Express 21, 2220–2235 (2013). [CrossRef] [PubMed]
  9. J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, and T. Salditt, “Reconstruction of wave front and object for inline holography from a set of detection planes,” Opt. Express 22, 11552–11569 (2014). [CrossRef]
  10. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
  11. R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick–Baez optics,” Appl. Phys. Lett. 90, 144104 (2007). [CrossRef]
  12. K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X–ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011). [CrossRef]
  13. C. Olendrowitz, M. Bartels, M. Krenkel, A. Beerlink, R. Mokso, M. Sprung, and T. Salditt, “Phase–contrast x–ray imaging and tomography of the nematode Caenorhabditis elegans,” Phys. Med. Biol. 57, 5309–5323 (2012). [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, 1996).
  15. D. M. Paganin, Coherent X–Ray Optics (Oxford University Press, 2006). [CrossRef]
  16. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE Press, 2010).
  17. M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B 86, 100103(R) (2012). [CrossRef]
  18. C. Rau, U. Wagner, Z. Pesic, and A. De Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011). [CrossRef]
  19. N. Banterle, K. Huy Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super–resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited