OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17440–17447

Surface chemical and local electronic properties of AlxGa1-xN epi-layers grown by MOCVD

Shuchang Wang, Xiong Zhang, Zhe Chuan Feng, and Yiping Cui  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17440-17447 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface chemical state and local electronic structure of AlxGa1-xN (x = 0~0.45) epi-layers have been systematically investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The results show that the surface of AlxGa1-xN is a composite of oxide and nitride of gallium and aluminum. In addition, it was identified that the Ga-O components were converted to Al-O components when the AlxGa1-xN sample was exposed to air. The EXAFS analysis also reveals that the Ga-N and Ga-Al bond lengths are independent of the Al composition, whereas the Ga-Ga bond length is a function of Al composition.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(340.6720) X-ray optics : Synchrotron radiation
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:

Original Manuscript: May 19, 2014
Revised Manuscript: June 24, 2014
Manuscript Accepted: July 1, 2014
Published: July 10, 2014

Shuchang Wang, Xiong Zhang, Zhe Chuan Feng, and Yiping Cui, "Surface chemical and local electronic properties of AlxGa1-xN epi-layers grown by MOCVD," Opt. Express 22, 17440-17447 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Qian, M. Brewster, S. K. Lim, Y. Ling, C. Greene, O. Laboutin, J. W. Johnson, S. Gradečak, Y. Cao, and Y. Li, “Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties,” Nano Lett. 12(6), 3344–3350 (2012). [CrossRef] [PubMed]
  2. S. Wang, X. Zhang, H. Guo, H. Yang, M. Zhu, L. Cheng, X. Zeng, and Y. Cui, “Enhanced performance of GaN-based light-emitting diodes by using a p-InAlGaN/GaN superlattice as electron blocking layer,” J. Mod. Opt. 60(21), 2012–2017 (2013). [CrossRef]
  3. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012). [CrossRef]
  4. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011). [CrossRef]
  5. Y. D. Ko, K. C. Kim, and Y. S. Kim, “Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes,” Superlattices Microstruct. 51(6), 933–941 (2012). [CrossRef]
  6. S. O. Jeon, S. E. Jang, H. S. Son, and J. Y. Lee, “External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes,” Adv. Mater. 23(12), 1436–1441 (2011). [CrossRef] [PubMed]
  7. G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, and A. Vilan, “Molecular engineering of semiconductor surfaces and devices,” Acc. Chem. Res. 35(2), 121–128 (2002). [CrossRef] [PubMed]
  8. Y. Lei, S. Yang, M. Wu, and G. Wilde, “Surface patterning using templates: concept, properties and device applications,” Chem. Soc. Rev. 40(3), 1247–1258 (2011). [CrossRef] [PubMed]
  9. Y. W. Lian, Y. S. Lin, J. M. Yang, C. H. Cheng, and S. S. H. Hsu, “AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking,” IEEE Electron Device Lett. 34(8), 981–983 (2013). [CrossRef]
  10. P. S. Park, K. M. Reddy, D. N. Nath, Z. Yang, N. P. Padture, and S. Rajan, “Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion,” Appl. Phys. Lett. 102(15), 153501 (2013). [CrossRef]
  11. D. Kochubey, V. Kaichev, A. Saraev, S. Tomyn, A. Belov, and Y. Voloshin, “Combined X-ray absorption near-edge structure and X-ray photoelectron study of the electrocatalytically active cobalt(I) cage complexes and the clathrochelate cobalt(II)- and cobalt(III)-containing precursors and analogs,” J. Phys. Chem. C 117(6), 2753–2759 (2013). [CrossRef]
  12. L. S. Cavalcante, N. C. Batista, T. Badapanda, M. G. S. Costa, M. S. Li, W. Avansie, V. R. Mastelaro, E. Longo, J. W. M. Espinosa, and M. F. C. Gurgel, “Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders,” Mater. Sci. Semicond. Process. 16(3), 1035–1045 (2013). [CrossRef]
  13. S. C. Ray, H. C. Hsueh, C. H. Wu, C. W. Pao, K. Asokan, M. T. Liu, H. M. Tsai, C. H. Chuang, W. F. Pong, J. W. Chiou, M. H. Tsai, J. M. Lee, L. Y. Jang, J. M. Chen, and J. F. Lee, “Local atomic and electronic structures and ferroelectric properties of PbZr0.52Ti0.48O3: An x-ray absorption study,” Appl. Phys. Lett. 99(4), 042909 (2011). [CrossRef]
  14. L. Q. Zhang, C. H. Zhang, J. Gou, L. H. Han, Y. T. Yang, Y. M. Sun, and Y. F. Jin, “PL and XPS study of radiation damage created by various slow highly charged heavy ions on GaN epitaxial layers,” Nucl. Instrum. Meth. B 269(23), 2835–2839 (2011). [CrossRef]
  15. T. Fujishima, S. Joglekar, D. Piedra, H. S. Lee, Y. Zhang, A. Uedono, and T. Palacios, “Formation of low resistance ohmic contacts in GaN-based high electron mobility transistors with BCl3 surface plasma treatment,” Appl. Phys. Lett. 103(8), 083508 (2013). [CrossRef]
  16. M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, “Effects of oxidation on surface chemical states and barrier height of AlGaN/GaN heterostructures,” Appl. Phys. Lett. 97(22), 222104 (2010). [CrossRef]
  17. R. D. Long and P. C. McIntyre, “Surface preparation and deposited gate oxides for gallium nitride based metal oxide semiconductor devices,” Materials 5(12), 1297–1335 (2012). [CrossRef]
  18. T. Hashizume, R. Nakasaki, S. Ootomo, S. Oyama, and H. Hasegawa, “Surface characterization of GaN and AlGaN layers grown by MOVPE,” Mater. Sci. Eng. B 80(1-3), 309–312 (2001). [CrossRef]
  19. J. Dumont, E. Monroy, E. Muñoz, R. Caudano, and R. Sporken, “Investigation of metal-GaN and metal-AlGaN contacts by XPS depth profiles and by electrical measurements,” J. Cryst. Growth 230(3-4), 558–563 (2001). [CrossRef]
  20. C. L. Perkins, B. Egaas, I. Repins, and B. To, “Quantitative analysis of graded Cu(In1-x,Gax)Se2 thin films by AES, ICP-OES, and EPMA,” Appl. Surf. Sci. 257(3), 878–886 (2010). [CrossRef]
  21. B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(4), 537–541 (2005). [CrossRef] [PubMed]
  22. M. Newville, “IFEFFIT: interactive XAFS analysis and FEFF fitting,” J. Synchrotron Radiat. 8(2), 322–324 (2001). [CrossRef] [PubMed]
  23. T. Mattila and A. Zunger, “Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys,” J. Appl. Phys. 85(1), 160–167 (1999). [CrossRef]
  24. M. Ferhat and F. Bechstedt, “First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: relation to structural and thermodynamic properties,” Phys. Rev. B 65(7), 075213 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited