OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17466–17477

Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique

Ryan J. Suess, Mohammad M. Jadidi, Kyowon Kim, and Thomas E. Murphy  »View Author Affiliations


Optics Express, Vol. 22, Issue 14, pp. 17466-17477 (2014)
http://dx.doi.org/10.1364/OE.22.017466


View Full Text Article

Enhanced HTML    Acrobat PDF (3484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear response of nanoporous silicon optical waveguides is investigated using a novel pump-probe method. In this approach we use a two-frequency heterodyne technique to measure the pump-induced transient change in phase and intensity in a single measurement. We measure a 100 picosecond material response time and report behavior matching a physical model dominated by free-carrier effects significantly stronger than those observed in traditional silicon-based waveguides.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.4330) Materials : Nonlinear optical materials
(230.7370) Optical devices : Waveguides
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 22, 2014
Revised Manuscript: June 25, 2014
Manuscript Accepted: June 26, 2014
Published: July 10, 2014

Citation
Ryan J. Suess, Mohammad M. Jadidi, Kyowon Kim, and Thomas E. Murphy, "Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique," Opt. Express 22, 17466-17477 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-17466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photon. 4, 492–494 (2010). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  3. G. T. Reed and A. P. Knights, Silicon Photonics(Wiley, 2008). [CrossRef]
  4. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  5. A. Agarwal, L. Liao, J. Foresi, M. R. Black, X. Duan, and L. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996). [CrossRef]
  6. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005). [CrossRef]
  7. A. Cullis, L. T. Canham, and P. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997). [CrossRef]
  8. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994). [CrossRef]
  9. P. Apiratikul, A. M. Rossi, and T. E. Murphy, “Nonlinearities in porous silicon opticalwaveguides at 1550 nm,” Opt. Express 17, 3396–3406 (2009). [CrossRef] [PubMed]
  10. R. J. Suess and T. E. Murphy, “Third-order optical nonlinearity in bulk nanoporous silicon at telecom wavelengths,” in “CLEO: Applications and Technology” (Optical Society of America, 2012).
  11. F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “Third-order optical nonlinearity and all-optical switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995). [CrossRef]
  12. T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, “Optically induced absorption in porous silicon and its application to logic gates,” J. Electrochem. Soc. 142, 3528–3533 (1995). [CrossRef]
  13. H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mat. Sci. Eng. R 39, 93–141 (2002). [CrossRef]
  14. W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997). [CrossRef]
  15. K. Kim and T. E. Murphy, “Porous silicon integrated mach-zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21, 19488–19497 (2013). [CrossRef] [PubMed]
  16. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Academic, 2009).
  17. P. Apiratikul, “Semiconductor waveguides for nonlinear optical signal processing,” Ph.D. thesis, University of Maryland, College Park (2009).
  18. K. L. Hall, G. Lenz, E. P. Ippen, and G. Raybon, “Heterodyne pump–probe technique for time-domain studies of optical nonlinearities in waveguides,” Opt. Lett. 17, 874–876 (1992). [CrossRef]
  19. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010). [CrossRef] [PubMed]
  20. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26, 4303–4309 (1987). [CrossRef] [PubMed]
  21. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B 47, 13876–13879 (1993). [CrossRef]
  22. R. Tsu, H. Shen, and M. Dutta, “Correlation of raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60, 112–114 (1992). [CrossRef]
  23. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  24. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode soi waveguide,” J. Lightwave Technol. 15, 505–518 (1997). [CrossRef]
  25. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013). [CrossRef]
  26. D. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994). [CrossRef]
  27. O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrum 5, 77–85 (1968). [CrossRef]
  28. R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, 1995).
  29. W. Hou and X. Zhao, “Drift of nonlinearity in the heterodyne interferometer,” Precis. Eng. 16, 25–35 (1994). [CrossRef]
  30. C.-K. Sun, B. Golubovic, J. Fujimoto, H. Choi, and C. Wang, “Heterodyne nondegenerate pump–probe measurement technique for guided-wave devices,” Opt. Lett. 20, 210–212 (1995). [CrossRef] [PubMed]
  31. A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20, 4085–4101 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited