OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 14 — Jul. 14, 2014
  • pp: 17590–17599

Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 22, Issue 14, pp. 17590-17599 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffraction efficiency of a hologram displayed on a phase-only spatial light modulator (SLM) is maximal, if the SLM modulates the phase of the diffracted beam in a range between 0 and 2π. However, if the readout wavelength changes, or a broadband beam is used, due to dispersion this ideal modulation range cannot be maintained, which leads to lower diffraction efficiency and to the appearance of an undesired intense zero diffraction order. Here we show how an SLM with an extended phase modulation range of 4π can be used to display on-axis holograms with a strong suppression of the zero diffraction order in a wide spectral range, extending over 200 nm. The basic idea is to transform the original on-axis hologram into an off-axis hologram by adding a blazed grating and performing a modulo 2π operation, and then transforming it back by adding the conjugate grating, but without performing a subsequent modulo operation. The final hologram then spans over a phase range of 4π. The total diffracted field corresponds to that of the original on-axis hologram, but now the zero-order Fourier component is diffracted away from the optical axis. The same principle can be used to entangle the on-axis hologram with other phase structures, e.g. a random phase mask or a second hologram structure, followed by a subsequent addition of the conjugate mask, which may also suppress higher diffraction orders. The reconstructed holograms show a strong contrast enhancement in a broad wavelength range.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(260.1960) Physical optics : Diffraction theory
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: March 31, 2014
Revised Manuscript: June 16, 2014
Manuscript Accepted: June 26, 2014
Published: July 11, 2014

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte, "Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range," Opt. Express 22, 17590-17599 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers, Society for Information Display (2008), Vol. 39, pp. 1074–1079. [CrossRef]
  2. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35, 1227–1229 (2010). [CrossRef] [PubMed]
  3. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997). [CrossRef] [PubMed]
  4. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009). [CrossRef] [PubMed]
  5. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, “Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 39, 2664–2669 (2000). [CrossRef]
  6. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  7. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008). [CrossRef]
  8. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999). [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  10. H. Gross, Handbook of Optical Systems(Wiley, 2005). [CrossRef]
  11. V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004). [CrossRef]
  12. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010). [CrossRef] [PubMed]
  13. J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012). [CrossRef] [PubMed]
  14. B. Kress and P. Meyrueis, Digital Diffractive Optics(Wiley, 2000).
  15. A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010). [CrossRef]
  16. U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005). [CrossRef]
  17. S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146. [CrossRef]
  18. R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012). [CrossRef] [PubMed]
  19. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  21. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013). [CrossRef]
  22. V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited