OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17666–17672

Improve power conversion efficiency of slab coupled optical waveguide lasers

Jiahua Fan, Lin Zhu, Mehmet Dogan, and Jonah Jacob  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17666-17672 (2014)
http://dx.doi.org/10.1364/OE.22.017666


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The slab coupled optical waveguide laser (SCOWL) is a promising candidate for high power, single mode emitter for a number of reasons, including its near diffraction limited optical quality, large modal size and near circular output pattern. Current SCOWL designs have limited electrical-optical power conversion efficiency (PCE) around 40%, which is lower than conventional RWG laser and broad area laser that are known to have much higher PCEs. To improve the SCOWL PCE, we theoretically optimize its structure by reducing Al content, increasing doping concentration and introducing a GRIN layer to prevent carrier leakage. Numerical simulations predict that an optimized SCOWL design has a maximum PCE of about 57% at room temperature.

© 2014 Optical Society of America

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 21, 2014
Revised Manuscript: May 26, 2014
Manuscript Accepted: July 4, 2014
Published: July 14, 2014

Citation
Jiahua Fan, Lin Zhu, Mehmet Dogan, and Jonah Jacob, "Improve power conversion efficiency of slab coupled optical waveguide lasers," Opt. Express 22, 17666-17672 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High-power, strained-layer amplifiers and lasers with tapered gain regions,” IEEE Photon. Technol. Lett.5(6), 605–608 (1993). [CrossRef]
  2. M. Mikulla, P. Chazan, A. Schmitt, S. Morgott, A. Wetzel, M. Walther, R. Kiefer, W. Pletschen, J. Braunstein, and G. Weimann, “High-brightness tapered semiconductor laser oscillators and amplifiers with low-modal gain epilayer-structures,” IEEE Photon. Technol. Lett.10(5), 654–656 (1998). [CrossRef]
  3. B. Sumpf, K. H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron.153, 1009–1020 (2009). [CrossRef]
  4. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol.20(6), 621 (2005). [CrossRef]
  5. J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “Algaas-ingaas slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003). [CrossRef]
  6. R. K. Huang, J. P. Donnelly, L. J. Missaggia, C. T. Harris, B. Chann, A. K. Goyal, A. S. Rubio, T. Y. Fan, and G. W. Turner, “High brightness slab-coupled optical waveguide lasers,” Proc. SPIE6485, 64850F (2007). [CrossRef]
  7. R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, “High-brightness slab-coupled optical waveguide laser arrays,” IEEE Photon. Technol. Lett.17(5), 959–961 (2005). [CrossRef]
  8. G. M. Smith, J. P. Donnelly, L. J. Missaggia, M. K. Connors, S. M. Redmond, K. J. Creedon, D. C. Mathewson, R. B. Swint, A. S. Rubio, and G. W. Turner, “Slab-coupled optical waveguide lasers and amplifiers,” Proc. SPIE8241, 8241S (2012).
  9. C. Lauer, H. König, G. Grönninger, S. Hein, A. G. Iglesias, M. Furitsch, J. Maric, H. Kissel, P. Wolf, J. Biesenbach, and U. Strauss, “Advances in performance and beam quality of 9xx-nm laser diodes tailored for efficient fiber coupling,” Proc. SPIE8241, 824111 (2012). [CrossRef]
  10. P. Crump, M. Grimshaw, J. Wang, W. Dong, S. Zhang, S. Das, J. Farmer, and M. DeVito, “85% power conversion efficiency 975-nm broad area diode lasers at −50 C, 76% at 10 C,” in Quantum Electronics and Laser Science Conference, Optical Society of America, JWB24 (2006).
  11. M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% CW power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett.415, 245–247 (2005). [CrossRef]
  12. G. M. Smith, R. K. Huang, J. P. Donnelly, L. J. Missaggia, M. K. Connors, G. W. Turner, and P. W. Juodawlkis, “High-power slab-coupled optical waveguide lasers,” Proc. IEEE Photon. Soc. Annu. Meet., 479–480 (2010).
  13. LASTIP, Crosslight Software Inc., Canada.
  14. H. Wenzel, P. Crump, A. Pietrzak, X. Wang, G. Erbert, and G. Tränkle, “Theoretical and experimental investigations of the limits to the maximum output power of laser diodes,” New J. Phys.12(8), 085007 (2010). [CrossRef]
  15. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-Power, Low-Noise 1.5-μm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011). [CrossRef]
  16. H. Hirayama, Y. Miyake, and M. Asada, “Analysis of current injection efficiency of separate-confinement-heterostructure quantum-film lasers,” IEEE J. Quantum Electron.81, 68–74 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited