OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17679–17690

Goos-Hänchen-like shift of three-level matter wave incident on Raman beams

Zhenglu Duan, Liyun Hu, XueXiang Xu, and Cunjin Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17679-17690 (2014)
http://dx.doi.org/10.1364/OE.22.017679


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When a three-level atomic wavepacket is obliquely incident on a ”medium slab” consisting of two far-detuned laser beams, there exists lateral shift between reflection and incident points at the surface of a ”medium slab”, analogous to optical Goos-Hänchen effect. We evaluate lateral shifts for reflected and transmitted waves via expansion of reflection and transmission coefficients, in contrast to the stationary phase method. Results show that lateral shifts can be either positive or negative dependent on the incident angle and the atomic internal state. Interestingly, a giant lateral shift of transmitted wave with high transmission probability is observed, which is helpful to observe such lateral shifts experimentally. Different from the two-level atomic wave case, we find that quantum interference between different atomic states plays crucial role on the transmission intensity and corresponding lateral shifts.

© 2014 Optical Society of America

OCIS Codes
(240.7040) Optics at surfaces : Tunneling
(260.3160) Physical optics : Interference
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 27, 2014
Published: July 14, 2014

Citation
Zhenglu Duan, Liyun Hu, XueXiang Xu, and Cunjin Liu, "Goos-Hänchen-like shift of three-level matter wave incident on Raman beams," Opt. Express 22, 17679-17690 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys.1, 333–346 (1947). [CrossRef]
  2. J. Picht, “Beitrag zur Theorie der Totalreflexion,” Ann. Phys.(Leipzig)3, 433–496 (1929). [CrossRef]
  3. I. Newton, Optick (Dover, 1952).
  4. K. Artmann, “Calculation of the Lateral Shift of Totally Reflected Beams,” Ann. Phys.(Leipzig)2, 87–102 (1948). [CrossRef]
  5. R.H. Renard, “Total Reflection: A New Evaluation of the Goos-Hänchen Shift,” J. Opt. Soc. Am.54, 1190–1197 (1964). [CrossRef]
  6. Y. Wan, Z. Zheng, W. Kong, Y. Liu, Z. Lu, and Y. Bian, “Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection,” Opt Lett.36, 3539–3541 (2011). [CrossRef] [PubMed]
  7. I.V. Shadrivov, A.A. Zharov, and Y.S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett.83, 2713–2715 (2003). [CrossRef]
  8. O. Emile, T. Galstyan, A. LeFloch, and F. Bretenaker, “Measurement of the Nonlinear Goos-Hänchen Effect for Gaussian Optical Beams,” Phys. Rev. Lett.75, 1511–1513 (1995). [CrossRef] [PubMed]
  9. C.F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91, 133903 (2003). [CrossRef] [PubMed]
  10. L.G. Wang and S.Y. Zhu, “Giant Lateral shift of a light beam at the defect mode in One-dimensional photonic crystals,” Opt. Lett.31, 101–103(2006). [CrossRef] [PubMed]
  11. H.M. Lai and S.W. Chan, “Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett.27, 680–682 (2002). [CrossRef]
  12. Ziauddin and Sajid Qamar, “Gain-assisted control of the Goos-Hänchen shift,” Phys. Rev. A84, 053844 (2011). [CrossRef]
  13. X.B. Yin and L Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett.89, 261108 (2006). [CrossRef]
  14. Zhao Bin and Lei Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express17, 21433–21441 (2009). [CrossRef]
  15. T Sakata, H Togo, and F Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hdnchen shift effect,” Appl. Phys. Lett.76, 2841–2843 (2000). [CrossRef]
  16. A. Gedeon, “Observation of the lateral displacement of surface acoustic beams reflected at boundaries of layered substrates,” Appl. Phys.3, 397–402 (1974). [CrossRef]
  17. L.W. Zeng and RX Song, “Lateral shift of acoustic wave at interface between double-positive and double-negative media,” Phys. Lett. A358, 484–486 (2006). [CrossRef]
  18. V Regnier, “Delayed reflection in a stratified acoustic strip,” Mathematical methods in the applied sciences28, 185–203 (2005). [CrossRef]
  19. H. Hora, “Zur seitenversetzung bei der totalreflexion von matteriewellen,” Optik17, 409–415 (1960).
  20. S.C. Miller and N. Ashby, “Shifts of Electron Beam Position Due to Total Reflection at a Barrier,” Phys. Rev. Lett.29, 740–743 (1972). [CrossRef]
  21. D.M. Fradkin and R.J. Kashuba, “Spatial displacement of electrons due to multiple total reflections,” Phys. Rev. D9, 2775–2788 (1974). [CrossRef]
  22. M. Mâaza and B. Pardo, “On the possibility to observe the longitudinal Goos-Hänchen shift with cold neutrons,” Opt. Commun.142, 84–90 (1997). [CrossRef]
  23. V.K. Ignatovich, “Neutron reflection from condensed matter, the Goos-Hanchen effect and coherence,” Phys. Lett. A322, 36–46 (2004). [CrossRef]
  24. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-Velocity Intense Source of Atoms from a Magneto-optical Trap,” Phys. Rev. Lett.77, 3331–3334 (1996). [CrossRef] [PubMed]
  25. T. M. Roach, H. Abele, M. G. Boshier, H. L. Grossman, K. P. Zetie, and E. A. Hinds, “Realization of a Magnetic Mirror for Cold Atoms,” Phys. Rev. Lett.75, 629–632 (1995). [CrossRef] [PubMed]
  26. M. Morinaga, M. Yasuda, T. Kishimoto, F. Shimizu, J. I. Fujita, and S. Matsui, “Holographic manipulation of a cold atomic beam,” Phys. Rev. Lett.77, 802–805 (1996). [CrossRef] [PubMed]
  27. W.P. Zhang and B.C. Sanders, “Atomic beamsplitter: reflection and transmission by a laser beam,” J. phys. B27, 795–808 (1994). [CrossRef]
  28. J. Martina and T. Bastinb, “Transmission of ultracold atoms through a micromaser: detuning effects,” Eur. Phys. J. D29, 133–137 (2004). [CrossRef]
  29. J. H. Huang, Z. L. Duan, H. Y. Ling, and W. P. Zhang, “Goos-Hänchen-like shifts in atom optics,” Phys. Rev. A77, 063608 (2008). [CrossRef]
  30. J.S. Liu and M.R. Taghizadeh, “Iterative algorithm for the design of diffractive phase elements for laser beam shaping,” Opt. Lett.27, 1463–1465 (2002). [CrossRef]
  31. P.A. Bélanger, R.L. Lachance, and C. Paré, “Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator,” Opt. Lett.17, 739–741 (1992). [CrossRef]
  32. G.J. Dong, S. Edvadsson, W. Lu, and P.F. Barker, “Super-Gaussian mirror for high-field-seeking molecules,” Phys. Rev. A72, 031605(R) (2005). [CrossRef]
  33. C.W. Hsue and T. Tamir, “Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,” J. Opt. Soc. Am. A2, 978–988 (1985). [CrossRef]
  34. Z.L. Duan and W.P. Zhang, “Failures of the adiabatic approximation in quantum tunneling time,” Phys. Rev. A86, 064101 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited