OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17700–17715

Study of thermally poled fibers with a two-dimensional model

Alexandre Camara, Oleksandr Tarasenko, and Walter Margulis  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17700-17715 (2014)
http://dx.doi.org/10.1364/OE.22.017700


View Full Text Article

Enhanced HTML    Acrobat PDF (3381 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional (2D) numerical model is implemented to describe the movement of ions under thermal poling for the specific case of optical fibers. Three types of cations are considered (representing Na+, Li+ and H3O+) of different mobility values. A cross-sectional map of the carrier concentration is obtained as a function of time. The role of the various cations is investigated. The assumptions of the model are validated by comparing the predictions to experimental data of the time evolution of the nonlinearity induced. A variational analysis of poling parameters including temperature, poling voltage, sign of the bias potential and initial ionic concentrations is performed for a particular fiber geometry. The analysis allows identifying the impact of these parameters on the induced second-order nonlinearity in poled fibers.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics

History
Original Manuscript: April 30, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: July 1, 2014
Published: July 14, 2014

Citation
Alexandre Camara, Oleksandr Tarasenko, and Walter Margulis, "Study of thermally poled fibers with a two-dimensional model," Opt. Express 22, 17700-17715 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  2. P. G. Kazansky, L. Dong, and P. S. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett.19(10), 701–703 (1994). [CrossRef] [PubMed]
  3. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett.30(25), 2162–2163 (1994). [CrossRef]
  4. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett.32(11), 1356–1358 (2007). [CrossRef] [PubMed]
  5. M. Malmström, O. Tarasenko, and W. Margulis, “Pulse selection at 1 MHz with electrooptic fiber switch,” Opt. Express20(9), 9465–9470 (2012). [CrossRef] [PubMed]
  6. A. Michie, I. M. Bassett, J. H. Haywood, and J. Ingram, “Electric field and voltage sensing at 50 Hz using a thermally poled silica optical fiber,” Meas. Sci. Technol.18(10), 3219–3222 (2007). [CrossRef]
  7. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett.34(16), 2483–2485 (2009). [CrossRef] [PubMed]
  8. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Temporal and spectral studies of large χ(2) in fused silica,” Proc. SPIE2044, 2–10 (1993). [CrossRef]
  9. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001). [CrossRef]
  10. A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett.82(18), 2948–2950 (2003). [CrossRef]
  11. A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett.36(6), 555–556 (2000). [CrossRef]
  12. F. Mezzapesa, I. C. S. Carvalho, C. Corbari, P. G. Kazansky, J. S. Wilkinson, and G. Chen, “Voltage assisted cooling: a new route to enhance χ(2) during poling,” in Conference on Lasers and Electro-Otics, CLEO 2005, Baltimore, USA (2005), 408–410. [CrossRef]
  13. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86, 6634–6640 (1999). [CrossRef]
  14. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with submicron resolution,” Appl. Phys. Lett.83(17), 3623–3625 (2003). [CrossRef]
  15. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I. C. S. Carvalho, “Near-surface modification of the third-order nonlinear susceptibility in thermally poled Infrasil glasses,” Appl. Phys. Lett.86(18), 181106 (2005). [CrossRef]
  16. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2–3), 165–176 (1998). [CrossRef]
  17. A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express13(20), 8015–8024 (2005). [CrossRef] [PubMed]
  18. S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn.116(1358), 1007–1023 (2008). [CrossRef]
  19. M. I. Petrov, Ya. A. Lepen’kin, and A. A. Lipovskii, “Polarization of glass containing fast and slow ions,” J. Appl. Phys.112(4), 043101 (2012). [CrossRef]
  20. A. A. Lipovskii, V. G. Melehin, Y. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and in glass-metal nanocomposites,” J. Appl. Phys.109(1), 011101 (2011). [CrossRef]
  21. A. De Francesco and G. E. Town, “Modeling the electrooptic evolution in thermally poled germanosilicate fibers,” IEEE J. Quantum Electron.37(10), 1312–1320 (2001). [CrossRef]
  22. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express17(18), 15534–15540 (2009). [CrossRef] [PubMed]
  23. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72(25), 3252–3254 (1998). [CrossRef]
  24. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: Frozen-in electric field or oriented dipoles?” Opt. Commun.110(5–6), 611–614 (1994). [CrossRef]
  25. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B22(3), 598–604 (2005). [CrossRef]
  26. A. Kudlinsk, Y. Quiquempois, and G. Martinelli, “Why the thermal poling could be innefficient in fibres,” in 30th European Conference on Optical Communications, Stockholm, Sweden (2004), Vol. 2, pp. 236–237.
  27. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express12(25), 6093–6099 (2004). [CrossRef] [PubMed]
  28. ILMASIL PN contamination levels are specified at http://www.qsil.com/en/material.html
  29. R. H. Doremus, “Electrolysis of alkali ions in silica glass,” Phys. Chem. Glasses10, 28 (1969).
  30. G. Frischat, “Sodium diffusion in SiO2 glass,” J. Am. Ceram. Soc.51(9), 528–530 (1968). [CrossRef]
  31. T. Drury and J. P. Roberts, “Diffusion in silica glass following reaction with tritiated water vapor,” Phys. Chem. Glasses4, 79–90 (1963).
  32. M. Fokine, L. Kjellberg, P. Helander, N. Myren, L. Norin, H. Olsson, N. Sjodin, and W. Margulis, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications ECOC 2004, Stockholm, Sweden (2004), Vol. 1, pp. 43–44.
  33. D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode: II, properties of ion-depleted glasses,” J. Am. Ceram. Soc.57(7), 295–300 (1974). [CrossRef]
  34. H. An and S. Fleming, “Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations,” Opt. Express20(7), 7436–7444 (2012). [CrossRef] [PubMed]
  35. D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol.5(2), 235–241 (1999). [CrossRef]
  36. F. C. Garcia, L. Vogelaar, and R. Kashyap, “Poling of a channel waveguide,” Opt. Express11(23), 3041–3047 (2003). [CrossRef] [PubMed]
  37. A. von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali halide crystals,” Phys. Rev.91(3), 568–579 (1953). [CrossRef]
  38. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett.21(7), 468–470 (1996). [CrossRef] [PubMed]
  39. W. Xu, PhD thesis, University of Sydney, Chapter 4 (2004).
  40. D. W. Shin and M. Tomozawa, “Electrical resistivity of silica glasses,” J. Non-Cryst. Solids163(2), 203–210 (1993). [CrossRef]
  41. K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express19(27), 26975–26983 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited