OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17716–17722

Picosecond 554 nm yellow-green fiber laser source with average power over 1 W

M. J. Petrasiunas, M. I. Hussain, J. Canning, M. Stevenson, and D. Kielpinski  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17716-17722 (2014)
http://dx.doi.org/10.1364/OE.22.017716


View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 μm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 1, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 30, 2014
Published: July 14, 2014

Citation
M. J. Petrasiunas, M. I. Hussain, J. Canning, M. Stevenson, and D. Kielpinski, "Picosecond 554 nm yellow-green fiber laser source with average power over 1 W," Opt. Express 22, 17716-17722 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A.98, 14392–14397 (2001). [CrossRef] [PubMed]
  2. G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot.67, 767–770 (2005). [CrossRef]
  3. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980). [CrossRef]
  4. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A60, R745–R748 (1999). [CrossRef]
  5. H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett.36, 1281–1283 (2011). [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990). [CrossRef] [PubMed]
  7. Z. Wang, Q. Peng, Y. Bo, J. Xu, S. Xie, C. Li, Y. Xu, F. Yang, Y. Wang, D. Cui, and Z. Xu, “Yellow-green 52.3W laser at 556nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser,” Appl. Opt.49, 3465–3469 (2010). [CrossRef] [PubMed]
  8. S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun.168, 227–232 (1999). [CrossRef]
  9. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express17, 569–574 (2009). [CrossRef] [PubMed]
  10. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express18, 5289–5294 (2010). [CrossRef] [PubMed]
  11. F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express16, 2381–2386 (2008). [CrossRef] [PubMed]
  12. S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys.21, 308–311 (2011). [CrossRef]
  13. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15, 191–206 (2009). [CrossRef]
  14. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express17, 20833–20839 (2009). [CrossRef] [PubMed]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010). [CrossRef] [PubMed]
  16. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett.37, 2199–2201 (2012). [CrossRef] [PubMed]
  17. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett.21, 390–392 (1996). [CrossRef] [PubMed]
  18. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett.22, 13–15 (1997). [CrossRef] [PubMed]
  19. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett.23, 1840–1842 (1998). [CrossRef]
  20. H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express12, 2150–2155 (2004). [CrossRef] [PubMed]
  21. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78, 1970–1972 (2001). [CrossRef]
  22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett.28, 194–196 (2003). [CrossRef] [PubMed]
  23. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27, 43–45 (2002). [CrossRef]
  24. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87, 131101 (2005). [CrossRef]
  25. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express16, 11294–11299 (2008). [CrossRef] [PubMed]
  26. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express19, 22588–22593 (2011). [CrossRef] [PubMed]
  27. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19, 23029–23035 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited