OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17723–17734

Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence

Yongping Huang, Bin Zhang, Zenghui Gao, Guangpu Zhao, and Zhichun Duan  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17723-17734 (2014)
http://dx.doi.org/10.1364/OE.22.017723


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analytical expressions for the cross-spectral density and average intensity of Gaussian Schell-model (GSM) vortex beams propagating through oceanic turbulence are obtained by using the extended Huygens–Fresnel principle and the spatial power spectrum of the refractive index of ocean water. The evolution behavior of GSM vortex beams through oceanic turbulence is studied in detail by numerical simulation. It is shown that the evolution behavior of coherent vortices and average intensity depends on the oceanic turbulence including the rate of dissipation of turbulent kinetic energy per unit mass of fluid, rate of dissipation of mean-square temperature, relative strength of temperature salinity fluctuations, and beam parameters including the spatial correlation length and topological charge of the beams, as well as the propagation distance.

© 2014 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(010.4455) Atmospheric and oceanic optics : Oceanic propagation
(260.6042) Physical optics : Singular optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 6, 2014
Revised Manuscript: June 7, 2014
Manuscript Accepted: June 22, 2014
Published: July 14, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yongping Huang, Bin Zhang, Zenghui Gao, Guangpu Zhao, and Zhichun Duan, "Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence," Opt. Express 22, 17723-17734 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A25(1), 225–230 (2008). [CrossRef] [PubMed]
  2. T. Wang, J. Pu, and Z. Chen, “Propagation of partially coherent vortex beams in a turbulent atmosphere,” Opt. Eng.47(3), 036002 (2008). [CrossRef]
  3. J. Li and B. Lü, “The transformation of an edge dislocation in atmospheric turbulence,” Opt. Commun.284(1), 1–7 (2011). [CrossRef]
  4. J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A, Pure Appl. Opt.11(4), 045710 (2009). [CrossRef]
  5. X. He and B. Lü, “Propagation of partially coherent flat-topped vortex beams through non-Kolmogorov atmospheric turbulence,” J. Opt. Soc. Am. A28(9), 1941–1948 (2011). [CrossRef]
  6. Z. Qin, R. Tao, P. Zhou, X. Xu, and Z. Liu, “Propagation of partially coherent Bessel–Gaussian beams carrying optical vortices in non-Kolmogorov turbulence,” Opt. Laser Technol.56, 182–188 (2014). [CrossRef]
  7. X. Sheng, Y. Zhu, Y. Zhu, and Y. Zhang, “Orbital angular momentum entangled states of vortex beam pump in non-Kolmogorov turbulence channel,” Optik (Stuttg.)124(17), 2635–2638 (2013). [CrossRef]
  8. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. A68(8), 1067–1072 (1978). [CrossRef]
  9. V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuation of the sea-water refractive index,” Int. J. Fluid Mech. Res.27, 82–98 (2000).
  10. S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2007).
  11. O. Korotkova and N. Farwell, “Polarization changes in stochastic electromagnetic beams propagating in the oceanic turbulence,” Proc. SPIE7588, 75880S (2010). [CrossRef]
  12. O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun.284(7), 1740–1746 (2011). [CrossRef]
  13. E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B105(2), 415–420 (2011). [CrossRef]
  14. O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex22(2), 260–266 (2012). [CrossRef]
  15. N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun.285(6), 872–875 (2012). [CrossRef]
  16. W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A, Pure Appl. Opt.8(12), 1052–1058 (2006). [CrossRef]
  17. J. Xu and D. Zhao, “Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence,” Opt. Laser Technol.57, 189–193 (2014). [CrossRef]
  18. Y. Zhou, K. Huang, and D. Zhao, “Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence,” Appl. Phys. B109(2), 289–294 (2012). [CrossRef]
  19. M. Tang and D. Zhao, “Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean,” Opt. Commun.312, 89–93 (2014). [CrossRef]
  20. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A19(8), 1592–1598 (2002). [CrossRef] [PubMed]
  21. I. S. Gradysteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic, 2007).
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  23. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun.222(1–6), 117–125 (2003). [CrossRef]
  24. I. Freund and N. Shvartsman, “Wave-field phase singularities: the sign principle,” Phys. Rev. A50(6), 5164–5172 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited