OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17756–17761

Manipulation of orbital angular momentum beams based on space diffraction compensation

Hailong Zhou, Jianji Dong, Siqi Yan, Yifeng Zhou, Lei Shi, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17756-17761 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We put forward a technique to manipulate the size of orbital angular momentum (OAM) beams based on space diffraction compensation. Paraxial Fresnel diffraction which carries a negative spatial quadratic phase distribution can be regarded as a negative diffractive effect. To compensate the negative diffraction, we employ a 4f Fourier lens system containing a phase mask to generate an inverse quadratic phase. The size of OAM beams can be easily controlled by designing the phase mask profile without changing the OAM. The applications of space diffraction compensation in OAM demultiplexing, ring fiber coupling for OAM beams and optical manipulation of micro particles are also discussed.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.4865) Diffraction and gratings : Optical vortices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Physical Optics

Original Manuscript: May 19, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 7, 2014
Published: July 14, 2014

Hailong Zhou, Jianji Dong, Siqi Yan, Yifeng Zhou, Lei Shi, and Xinliang Zhang, "Manipulation of orbital angular momentum beams based on space diffraction compensation," Opt. Express 22, 17756-17761 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett.30(15), 1953–1955 (2005). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett.90(13), 133901 (2003). [CrossRef] [PubMed]
  5. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007). [CrossRef]
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  7. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science340(6140), 1545–1548 (2013). [CrossRef] [PubMed]
  8. H. Zhou, J. Dong, L. Shi, D. Huang, and X. Zhang, “Hybrid coding method of multiple orbital angular momentum states based on the inherent orthogonality,” Opt. Lett.39(4), 731–734 (2014). [CrossRef] [PubMed]
  9. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, and S. Dolinar, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photon. J.4(2), 535–543 (2012). [CrossRef]
  10. A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express22(4), 4349–4356 (2014). [CrossRef] [PubMed]
  11. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett.38(22), 4919–4922 (2013). [CrossRef] [PubMed]
  12. A. Belmonte and J. P. Torres, “Digital coherent receiver for orbital angular momentum demultiplexing,” Opt. Lett.38(2), 241–243 (2013). [CrossRef] [PubMed]
  13. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol.6(2), 164–180 (2000). [CrossRef]
  14. J. W. Goodman and S. C. Gustafson, “Introduction to Fourier optics,” Opt. Eng.35(5), 1513 (1996). [CrossRef]
  15. Y. Yang, Y. Dong, C. Zhao, and Y. Cai, “Generation and propagation of an anomalous vortex beam,” Opt. Lett.38(24), 5418–5421 (2013). [CrossRef] [PubMed]
  16. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH Verlag, 2012).
  17. N. Savage, “Digital spatial light modulators,” Nat. Photon.3(3), 170–172 (2009). [CrossRef]
  18. P. F. Almoro and S. G. Hanson, “Random phase plate for wavefront sensing via phase retrieval and a volume speckle field,” Appl. Opt.47(16), 2979–2987 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited