OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17762–17768

Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes

A. L. Chekhov, V. L. Krutyanskiy, A. N. Shaimanov, A. I. Stognij, and T. V. Murzina  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17762-17768 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetoplasmonic crystals (MPC) composed of a 1D gold grating on top of a magnetic garnet layer made by a combined ion-beam etching technique are studied. We demonstrate that this method allows to make high-quality MPC. It is shown that MPC with a 30–40 nm thick perforated gold layer provides an effective excitation of two surface plasmon-polariton modes and several numbers of waveguide modes in the garnet layer. An enhancement of the transversal magneto-optical effect up to the value of 10−2 is observed for all types of resonant modes, that propagate in the magnetic layer, due to magnetic-field control over the mode excitation which is promising for future photonic devices.

© 2014 Optical Society of America

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves

ToC Category:

Original Manuscript: May 26, 2014
Revised Manuscript: July 4, 2014
Manuscript Accepted: July 5, 2014
Published: July 14, 2014

A. L. Chekhov, V. L. Krutyanskiy, A. N. Shaimanov, A. I. Stognij, and T. V. Murzina, "Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes," Opt. Express 22, 17762-17768 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Armelles, A. Cebollada, A. Garcıa-Martın, J. M. Garcıa-Martın, M. U. Gonzalez, J. B. Gonzalez-Dıaz, E. Ferreiro-Vila, and J. F. Torrad, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A., Pure Appl. Opt. 11, 114023 (2009). [CrossRef]
  2. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4, 107–111 (2010). [CrossRef]
  3. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magnetooptical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010). [CrossRef]
  4. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011). [CrossRef] [PubMed]
  5. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. V. Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013). [CrossRef] [PubMed]
  6. M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, M. Vasiliev, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15, 075024 (2013). [CrossRef]
  7. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013). [CrossRef] [PubMed]
  8. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).
  9. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113 (2004). [CrossRef]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  11. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  12. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, vol. 4 (Taylor and Francis, London, 1997). [CrossRef]
  13. A. V. Bespalova, O. L. Golikovaa, S. S. Savina, A. I. Stognij, and N. N. Novitskiib, “Preparation of magnonic crystals with nanoislands by focused ion beam etching,” Inorg. Mater. 48, 1190–1192 (2012). [CrossRef]
  14. M. Pashkevich, R. Gieniusz, A. Stognij, N. Novitskii, A. Maziewski, and A. Stupakiewicz, “Formation of cobalt/garnet heterostructures and their magnetic properties,” Thin Solid Films 556, 464–469 (2014). [CrossRef]
  15. V. Belotelov, D. Bykov, L. Doskolovich, A. Kalish, and A. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” JETP 110, 816–824 (2010). [CrossRef]
  16. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  17. G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co and Fe in the ultraviolet visible, and infrared parts of the spectrum,” JETP 26, 1080 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited