OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17782–17790

Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging

Haichun Liu, Can T. Xu, and Stefan Andersson-Engels  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17782-17790 (2014)
http://dx.doi.org/10.1364/OE.22.017782


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatial resolution of fluorescence molecular imaging is a critical issue for the success of the technique in biomedical applications. One important method for increasing the imaging resolution is to utilize multi-photon emissions. In this study, we thoroughly investigate the potential of the multi-photon upconversion emissions from rare-earth-doped upconverting nanoparticles for the improvement in spatial resolution of diffuse optical imaging. It is found that the imaging resolution is increased by a factor of 1.45 through employing two-photon upconversion emission compared with using the linear emission, and can be further elevated by a factor of 1.23 by using three-photon upconversion emission. In addition, we demonstrate that the pulsed excitation approach holds the promise of overcoming the low quantum yield associated with the high-order upconversion emissions.

© 2014 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(170.7050) Medical optics and biotechnology : Turbid media
(160.4236) Materials : Nanomaterials

ToC Category:
Imaging Systems

History
Original Manuscript: April 3, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 14, 2014
Published: July 15, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Haichun Liu, Can T. Xu, and Stefan Andersson-Engels, "Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging," Opt. Express 22, 17782-17790 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17782


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology219, 316–333 (2001). [CrossRef] [PubMed]
  2. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. USA93, 10763–10768 (1996). [CrossRef] [PubMed]
  3. Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology19, 345606 (2008). [CrossRef]
  4. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104, 139–173 (2004). [CrossRef] [PubMed]
  5. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem.81, 930–935 (2009). [CrossRef] [PubMed]
  6. J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. J. M. van Veggel, “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging,” J. Phys. Chem. C115, 19054–19064 (2011). [CrossRef]
  7. G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared up-conversion for high-contrast deep tissue bioimaging,” ACS Nano6, 8280–8287 (2012). [CrossRef] [PubMed]
  8. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” J. Am. Chem. Soc.133, 17122–17125 (2011). [CrossRef] [PubMed]
  9. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41, 1323–1349 (2012). [CrossRef]
  10. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. DOI: (2014). [CrossRef]
  11. H. Päkkilä, M. Ylihärsilä, S. Lahtinen, L. Hattara, N. Salminen, R. Arppe, M. Lastusaari, P. Saviranta, and T. Soukka, “Quantitative multianalyte microarray immunoassay utilizing upconverting phosphor technology,” Anal. Chem.84, 8628–8634 (2012). [CrossRef] [PubMed]
  12. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst135, 1839–1854 (2010). [CrossRef] [PubMed]
  13. C. T. Xu, N. Svensson, J. Axelsson, P. Svenmarker, G. Somesfalean, G. Chen, H. Liang, H. Liu, Z. Zhang, and S. Andersson-Engels, “Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media,” Appl. Phys. Lett.93, 171103 (2008). [CrossRef]
  14. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett.8, 3834–3838 (2008). [CrossRef] [PubMed]
  15. C. T. Xu, J. Axelsson, and S. Andersson-Engels, “Fluorescence diffuse optical tomography using upconverting nanoparticles,” Appl. Phys. Lett.94, 251107 (2009). [CrossRef]
  16. H. Liu, C. T. Xu, D. Lindgren, H. Xie, D. Thomas, C. Gundlach, and S. Andersson-Engels, “Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities,” Nanoscale5, 4770–4775 (2013). [CrossRef] [PubMed]
  17. P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett.35, 2789–2791 (2010). [CrossRef] [PubMed]
  18. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano6, 4788–4795 (2012). [CrossRef] [PubMed]
  19. H. Qiu, C. Yang, W. Shao, J. Damasco, X. Wang, H. Ågren, P. N. Prasad, and G. Chen, “Enhanced upconversion luminescence in Yb3+/Tm3+-codoped fluoride active core/active shell/inert shell nanoparticles through directed energy migration,” Nanomaterials4, 55–68 (2014). [CrossRef]
  20. L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett.102, 143114 (2013). [CrossRef]
  21. H.-S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir24, 12123–12125 (2008). [CrossRef] [PubMed]
  22. M. K. G. Jayakumar, N. M. Idris, and Y. Zhang, “Remote activation of biomolecules in deep tissues using near-infrared-to-uv upconversion nanotransducers,” Proc. Natl. Acad. Sci. USA109, 8483–8488 (2012). [CrossRef] [PubMed]
  23. G. Chen, C. Yang, and P. N. Prasad, “Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles,” Acc. Chem. Res.46, 1474–1486 (2013). [CrossRef] [PubMed]
  24. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6, 560–564 (2012). [CrossRef]
  25. A. Priyam, N. M. Idris, and Y. Zhang, “Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging,” J. Mater. Chem.22, 960–965 (2012). [CrossRef]
  26. J. Shen, G. Chen, T. Y. Ohulchanskyy, S. J. Kesseli, S. Buchholz, Z. Li, P. N. Prasad, and G. Han, “Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation,” Small9, 3213–3217 (2013). [PubMed]
  27. G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano4, 3163–3168 (2010). [CrossRef] [PubMed]
  28. H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through using millisecond single pulse excitation with high peak power,” Nanoscale5, 10034–10040 (2013). [CrossRef] [PubMed]
  29. C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev.7, 663–697 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited