OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17791–17804

Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices

Gregory T. Forcherio, Phillip Blake, Drew DeJarnette, and D. Keith Roper  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17791-17804 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lattices of plasmonic nanorings with particular geometries exhibit singular, tunable resonance features in the infrared. This work examined effects of nanoring inner radius, wall thickness, and lattice constant on the spectral response of single nanorings and in Fano resonant square lattices, combining use of the discrete and coupled dipole approximations. Increasing nanoring inner radius red-shifted and broadened the localized surface plasmon resonance (LSPR), while wall thickness modulated the LSPR wavelength and decreased absorption relative to scattering. The square lattice constant was tuned to observe diffractively-coupled lattice resonances, which increased resonant extinction 4.3-fold over the single-ring LSPR through Fano resonance. Refractive index sensitivities of 760 and 1075 nm RIU−1 were computed for the plasmon and lattice resonances of an optimized nanoring lattice. Sensitivity of an optimal nanoring lattice to a local change in dielectric, useful for sensing applications, was 4 to 5 times higher than for isolated nanorings or non-coupling arrays. This was attributable to the Fano line-shape in far-field diffractive coupling with near-field LSPR.

© 2014 Optical Society of America

OCIS Codes
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Imaging Systems

Original Manuscript: April 29, 2014
Revised Manuscript: July 5, 2014
Manuscript Accepted: July 8, 2014
Published: July 15, 2014

Gregory T. Forcherio, Phillip Blake, Drew DeJarnette, and D. Keith Roper, "Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices," Opt. Express 22, 17791-17804 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010). [CrossRef]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011). [CrossRef] [PubMed]
  3. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  4. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008). [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  7. D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014). [CrossRef]
  8. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012). [CrossRef] [PubMed]
  9. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012). [CrossRef]
  10. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011). [CrossRef] [PubMed]
  11. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  12. H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010). [CrossRef] [PubMed]
  13. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008). [CrossRef] [PubMed]
  14. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29(1), 88–100 (2012). [CrossRef]
  15. D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012). [CrossRef]
  16. D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014). [CrossRef]
  17. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  18. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  19. J. Kennedy, A Fast Bresenham Type Algorithm For Drawing Circles (2012).
  20. P. Blake, “Refractive Index Chemical Sensing with Noble Metal Nanoparticles,” University of Arkansas (2012).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997), pp. 286–295.
  22. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of Electromagnetic Waves on a Rectangular Lattice of Polarizable Points,” http://arxiv.org/abs/astro-ph/0403082 (2004).
  23. A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007). [CrossRef]
  24. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  25. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008). [CrossRef]
  26. S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express 18(21), 22271–22282 (2010). [CrossRef] [PubMed]
  27. P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010). [CrossRef] [PubMed]
  28. C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013). [CrossRef] [PubMed]
  29. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999). [CrossRef]
  30. D. K. Roper, P. Blake, D. DeJarnette, and B. Harbin, “Plasmon Coupling Enhanced in Nanostructured Chem/Bio Sensors,” in Nanoplasmonics: Advanced Device Applications, J. W. M. Chon and K. Iniewski, eds. (CRC Press, 2013), pp. 183–219.
  31. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  32. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009). [CrossRef] [PubMed]
  33. S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006). [CrossRef] [PubMed]
  34. A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7(2), 1755–1762 (2013). [CrossRef] [PubMed]
  35. D. K. Roper, “Self-Assembly of Nanodroplets in Nanocomposite Materials in Nanodroplets Science and Technology,” in Nanodroplets, Z. M. Wang, ed. (Springer, 2013), pp. 73–97.
  36. H. Liu, X. Zhang, and T. Zhai, “Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms,” Opt. Express 21(13), 15314–15322 (2013). [CrossRef] [PubMed]
  37. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012). [CrossRef] [PubMed]
  38. H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012). [CrossRef]
  39. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008). [CrossRef]
  40. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010). [CrossRef] [PubMed]
  41. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  42. M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014). [CrossRef]
  43. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009). [CrossRef] [PubMed]
  44. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  45. P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014). [CrossRef]
  46. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012). [CrossRef] [PubMed]
  47. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited