OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17840–17853

Complexity in pulsed nonlinear laser systems interrogated by permutation entropy

Joshua P. Toomey, Deborah M. Kane, and Thorsten Ackemann  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17840-17853 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Permutation entropy (PE) has a growing significance as a relative measure of complexity in nonlinear systems. It has been applied successfully to measuring complexity in nonlinear laser systems. Here, PE and weighted permutation entropy (WPE) are discovered to show an unexpected inversion to higher values, when characterizing the complexity at the characteristic frequencies of nonlinear drivers in laser systems, for output power sequences which are pulsed. The cause of this inversion is explained and its presence can be used to identify when irregular dynamics transform into a fairly regular pulsed signal (with amplitude and timing jitter). When WPE is calculated from experimental output power time series from various nonlinear laser systems as a function of delay time, both the minimum value of WPE, and the width of the peak in the WPE plot are shown to be indicative of the level of amplitude variation and timing jitter present in the pulsed output. Links are made with analysis using simulated time series data with systematic variation in timing jitter and/or amplitude variations.

© 2014 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 24, 2014
Revised Manuscript: May 5, 2014
Manuscript Accepted: July 4, 2014
Published: July 16, 2014

Joshua P. Toomey, Deborah M. Kane, and Thorsten Ackemann, "Complexity in pulsed nonlinear laser systems interrogated by permutation entropy," Opt. Express 22, 17840-17853 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9(1-2), 189–208 (1983). [CrossRef]
  2. M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65(1-2), 117–134 (1993). [CrossRef]
  3. H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time-series,” Phys. Lett. A 185(1), 77–87 (1994). [CrossRef]
  4. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. (Cambridge University Press, Cambridge, 2004).
  5. C. Bandt and B. Pompe, “Permutation entropy: A natural complexity measure for time series,” Phys. Rev. Lett. 88(17), 174102 (2002). [CrossRef] [PubMed]
  6. M. T. Martin, A. Plastino, and O. A. Rosso, “Generalized statistical complexity measures: Geometrical and analytical properties,” Physica A 369(2), 439–462 (2006). [CrossRef]
  7. Y. H. Cao, W. W. Tung, J. B. Gao, V. A. Protopopescu, and L. M. Hively, “Detecting dynamical changes in time series using the permutation entropy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046217 (2004). [CrossRef] [PubMed]
  8. L. Zunino, O. A. Rosso, and M. C. Soriano, “Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1250–1257 (2011). [CrossRef]
  9. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011). [CrossRef]
  10. J. P. Toomey and D. M. Kane, “Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy,” Opt. Express 22(2), 1713–1725 (2014). [CrossRef] [PubMed]
  11. J. Tiana-Alsina, M. C. Torrent, O. A. Rosso, C. Masoller, and J. Garcia-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82(1), 013819 (2010). [CrossRef]
  12. N. Rubido, J. Tiana-Alsina, M. C. Torrent, J. Garcia-Ojalvo, and C. Masoller, “Language organization and temporal correlations in the spiking activity of an excitable laser: Experiments and model comparison,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026202 (2011). [CrossRef] [PubMed]
  13. A. Aragoneses, N. Rubido, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013). [CrossRef]
  14. S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005). [CrossRef]
  15. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a Semiconductor-Based Cavity Soliton Laser,” Phys. Rev. Lett. 100(1), 013907 (2008). [CrossRef] [PubMed]
  16. N. Radwell and T. Ackemann, “Characteristics of Laser Cavity Solitons in a Vertical-Cavity Surface-Emitting Laser With Feedback From a Volume Bragg Grating,” IEEE J. Quantum Electron. 45(11), 1388–1395 (2009). [CrossRef]
  17. D. M. Kane and J. P. Toomey, “Variable pulse repetition frequency output from an optically injected solid state laser,” Opt. Express 19(5), 4692–4702 (2011). [CrossRef] [PubMed]
  18. J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009). [CrossRef] [PubMed]
  19. T. Ackemann, N. Radwell, C. McIntyre, G. L. Oppo, and W. J. Firth, “Self pulsing solitons: A base for optically controllable pulse trains in photonic networks?” in Transparent Optical Networks (ICTON), 2010 12th International Conference on, 2010), 1–4. [CrossRef]
  20. N. Radwell, “Characteristics of a cavity soliton laser based on a VCSEL with frequency selective feedback,” PhD Thesis (University of Strathclyde, 2010).
  21. M. Staniek and K. Lehnertz, “Parameter selection for permutation entropy measurements,” Int. J. Bifurcat. Chaos 17(10), 3729–3733 (2007). [CrossRef]
  22. B. Fadlallah, B. Chen, A. Keil, and J. Príncipe, “Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022911 (2013). [CrossRef] [PubMed]
  23. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18(16), 16955–16972 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited