OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17880–17889

Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

Mark Villangca, Andrew Bañas, Darwin Palima, and Jesper Glückstad  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17880-17889 (2014)
http://dx.doi.org/10.1364/OE.22.017880


View Full Text Article

Enhanced HTML    Acrobat PDF (16499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

© 2014 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: May 13, 2014
Revised Manuscript: July 1, 2014
Manuscript Accepted: July 8, 2014
Published: July 16, 2014

Citation
Mark Villangca, Andrew Bañas, Darwin Palima, and Jesper Glückstad, "Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides," Opt. Express 22, 17880-17889 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22(8), 868–871 (2010). [CrossRef] [PubMed]
  2. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008). [CrossRef] [PubMed]
  3. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett.16(19), 1463–1465 (1991). [CrossRef] [PubMed]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000). [CrossRef]
  5. J. Glückstad, “Phase contrast image synthesis,” Opt. Commun.130(4-6), 225–230 (1996). [CrossRef]
  6. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett.27(4), 267–269 (2002). [CrossRef] [PubMed]
  7. D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev.7(4), 478–494 (2013). [CrossRef]
  8. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express13(18), 6899–6904 (2005). [CrossRef] [PubMed]
  9. H.-U. Ulriksen, J. Thøgersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ.3, 08034 (2008). [CrossRef]
  10. J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011). [CrossRef]
  11. G. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011). [CrossRef]
  12. S. H. Simpson, D. B. Phillips, D. M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf.126, 91–98 (2013). [CrossRef]
  13. D. B. Phillips, M. J. Padgett, S. Hanna, Y.-L. D. Ho, D. M. Carberry, M. J. Miles, and S. H. Simpson, “Shape-induced force fields in optical trapping,” Nat. Photonics8(5), 400–405 (2014). [CrossRef]
  14. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, T. Aabo, P. Ormos, and J. Glückstad, “Optical forces through guided light deflections,” Opt. Express21(1), 581–593 (2013). [CrossRef] [PubMed]
  15. D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express20(28), 29679–29693 (2012). [CrossRef] [PubMed]
  16. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012). [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  18. A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20(1), 130–137 (2003). [CrossRef] [PubMed]
  19. J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, “Mode evolution in long tapered fibers with high tapering ratio,” Opt. Express20(23), 25461–25470 (2012). [CrossRef] [PubMed]
  20. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008). [CrossRef] [PubMed]
  21. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14(6), 2101–2107 (2006). [CrossRef] [PubMed]
  22. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods7(5), 377–381 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (723 KB)     
» Media 2: MOV (181 KB)     
» Media 3: MOV (163 KB)     
» Media 4: MOV (94 KB)     
» Media 5: MOV (108 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited