OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17915–17929

Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses

Natsuki Nemoto, Takuya Higuchi, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17915-17929 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed an electro-optic (EO) sampling method with polarization modulation of probe pulses; this method allows us to measure the direction of a terahertz (THz) electric-field vector with a precision of 0.1 mrad in a data acquisition time of 660 ms using a 14.0-kHz repetition rate pulsed light source. Through combination with a THz time-domain spectroscopy technique, a time-dependent two-dimensional THz electric field was obtained. We used a photoelastic modulator for probe-polarization modulation and a (111)-oriented zincblende crystal as the EO crystal. Using the tilted pulse front excitation method with stable regeneratively amplified pulses, we prepared stable and intense THz pulses and performed pulse-by-pulse analog-to-digital conversion of the signals. These techniques significantly reduced statistical errors and enabled sub-mrad THz polarization measurements. We examined the performance of this method by measuring a wire-grid polarizer as a sample. The present method will open a new frontier of high-precision THz polarization sensitive measurements.

© 2014 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6495) Spectroscopy : Spectroscopy, teraherz
(080.6755) Geometric optics : Systems with special symmetry

ToC Category:
Terahertz Optics

Original Manuscript: May 29, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 9, 2014
Published: July 16, 2014

Natsuki Nemoto, Takuya Higuchi, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami, "Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses," Opt. Express 22, 17915-17929 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  2. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001). [CrossRef]
  3. T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013). [CrossRef]
  4. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014). [CrossRef]
  5. J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004). [CrossRef]
  6. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010). [CrossRef] [PubMed]
  7. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010). [CrossRef] [PubMed]
  8. K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013). [CrossRef]
  9. S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994). [CrossRef] [PubMed]
  10. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002). [CrossRef]
  11. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007). [CrossRef] [PubMed]
  12. T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013). [CrossRef]
  13. K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging (Springer & Heidelberg Berlin, 2013), Chap. 11.
  14. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013). [CrossRef] [PubMed]
  15. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012). [CrossRef]
  16. E. Castro-Camus, “Polarization-Resolved Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 33(4), 418–430 (2012). [CrossRef]
  17. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008). [CrossRef]
  18. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005). [CrossRef] [PubMed]
  19. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005). [CrossRef]
  20. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007). [CrossRef] [PubMed]
  21. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007). [CrossRef] [PubMed]
  22. N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012). [CrossRef] [PubMed]
  23. M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett. 37(11), 1811–1813 (2012). [CrossRef] [PubMed]
  24. Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012). [CrossRef]
  25. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002). [CrossRef] [PubMed]
  26. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013). [CrossRef] [PubMed]
  27. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012). [CrossRef] [PubMed]
  28. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012). [CrossRef]
  29. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011). [CrossRef] [PubMed]
  30. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011). [CrossRef] [PubMed]
  31. Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013). [CrossRef] [PubMed]
  32. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013). [CrossRef]
  33. K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014). [CrossRef] [PubMed]
  34. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004). [CrossRef]
  35. N. Yasumatsu and S. Watanabe, “Development of the terahertz electric-field vector sensing method by using the electro-optic modulator,” in The 61st JSAP Spring Meeting,2014, (Aoyama Gakin Univ., Sagamihara, Japan, 2014), 18p-E17–3P.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited