OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17930–17947

Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17930-17947 (2014)
http://dx.doi.org/10.1364/OE.22.017930


View Full Text Article

Enhanced HTML    Acrobat PDF (2447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultra-compact electro-absorption (EA) modulator operating around 1.55-μm telecom wavelengths is proposed and theoretically investigated. The modulator is comprised of a stack of TiN/HfO2/ITO/Cu conformally deposited on a single-mode stripe waveguide to form a hybrid plasmonic waveguide (HPW). Since the thin ITO layer can behave as a semiconductor, the stack itself forms a MOS capacitor. A voltage is applied between the Cu and TiN layers to change the electron concentration of ITO (NITO), which in turn changes its permittivity as well as the propagation loss of HPW. For a HPW comprised of a Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN stack on a 400-nm × 340-nm-Si stripe waveguide, the propagation loss for the 1.55-μm TE (TM) mode increases from 1.6 (1.4) to 23.2 (23.9) dB/μm when the average NITO in the 3-nm ITO layer increases from 2 × 1020 to 7 × 1020 cm−3, which is achieved by varying the voltage from −2 to 4 V if the initial NITO is 3.5 × 1020 cm−3. As a result, a 1-μm-long EA modulator inserted in the 400-nm × 340-nm-Si stripe waveguide exhibits insertion loss of 2.9 (3.2) dB and modulation depth of 19.9 (15.2) dB for the TE (TM) mode. The modulation speed is ~11 GHz, limited by the RC delay, and the energy consumption is ~0.4 pJ/bit. The stack can also be deposited on a low-index-contrast waveguide such as Si3N4. For example, a 4-μm-long EA modulator inserted in an 800-nm × 600-nm-Si3N4 stripe waveguide exhibits insertion loss of 6.3 (3.5) dB and modulation depth of 16.5 (15.8) dB for the TE (TM) mode. The influences of the ITO, TiN, HfO2 layers and the beneath dielectric core, as well as the processing tolerance, on the performance of the proposed EA modulator are systematically investigated.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.2100) Materials : Electro-optical materials
(250.7360) Optoelectronics : Waveguide modulators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: April 18, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 5, 2014
Published: July 17, 2014

Citation
Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration," Opt. Express 22, 17930-17947 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4(8), 518–526 (2010). [CrossRef]
  3. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE97 (7), 1199–1215 (2009). [CrossRef]
  4. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst.7, 7 (2011).
  5. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011). [CrossRef] [PubMed]
  6. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials mechanics and optics meet,” Opt. Mater. Express3(9), 1313–1331 (2013). [CrossRef]
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon.4(2), 83–91 (2010). [CrossRef]
  8. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010). [CrossRef]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  10. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  11. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express21(7), 8320–8330 (2013). [CrossRef] [PubMed]
  12. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010). [CrossRef] [PubMed]
  13. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011). [CrossRef]
  14. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012). [CrossRef]
  15. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012). [CrossRef]
  16. A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conf. on Lasers and Electro-optics (CLEO), Optical Society of America, San Jose, California (2010), p. JThE77.
  17. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011). [CrossRef] [PubMed]
  18. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012). [CrossRef] [PubMed]
  19. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express21(22), 26387–26397 (2013). [CrossRef] [PubMed]
  20. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express21(22), 27326–27337 (2013). [CrossRef] [PubMed]
  21. J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C112(6), 1938–1945 (2008). [CrossRef]
  22. http://www.ioffe.ru/SVA/NSM/nk/Nitrides/Gif/tini.gif .
  23. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  24. https://www.synopsys.com/TOOLS/TCAD/DEVICESIMULATION/Pages/TaurusMedici.aspx .
  25. H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc.41, 739–744 (2002).
  26. D. A. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2), A293–A308 (2012). [CrossRef] [PubMed]
  27. https://www.lumerical.com/ .
  28. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  29. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012). [CrossRef]
  30. S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express21(20), 23376–23390 (2013). [CrossRef] [PubMed]
  31. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010). [CrossRef]
  32. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett.34(6), 839–841 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited