OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17948–17958

Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy

Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard Beckhoff, Eckart Rühl, and Gerhard Ulm  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17948-17958 (2014)
http://dx.doi.org/10.1364/OE.22.017948


View Full Text Article

Enhanced HTML    Acrobat PDF (3250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(240.0240) Optics at surfaces : Optics at surfaces
(300.0300) Spectroscopy : Spectroscopy
(310.6860) Thin films : Thin films, optical properties
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 5, 2014
Revised Manuscript: June 13, 2014
Manuscript Accepted: June 16, 2014
Published: July 17, 2014

Citation
Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard Beckhoff, Eckart Rühl, and Gerhard Ulm, "Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy," Opt. Express 22, 17948-17958 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2002).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  3. A. Zayats and D. Richards, eds., Nano-Optics and Near-Field Optical Microscopy (Artech House, 2009).
  4. N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev.43(4), 1248–1262 (2014). [CrossRef] [PubMed]
  5. S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2–3), 313–317 (1995). [CrossRef]
  6. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995). [CrossRef] [PubMed]
  7. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett.20(18), 1924–1926 (1995). [CrossRef] [PubMed]
  8. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999). [CrossRef]
  9. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett.85, 3029–3032 (2000).
  10. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003). [CrossRef]
  11. A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near-field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum.77(4), 043703 (2006). [CrossRef]
  12. M. Böhmler, Z. Wang, A. Myalitsin, A. Mews, and A. Hartschuh, “Optical imaging of CdSe nanowires with nanoscale resolution,” Angew. Chem. Int. Ed. Engl.50(48), 11536–11538 (2011). [CrossRef] [PubMed]
  13. M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from Β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013). [CrossRef] [PubMed]
  14. P. Hermann, M. Hecker, D. Chumakov, M. Weisheit, J. Rinderknecht, A. Shelaev, P. Dorozhkin, and L. M. Eng, “Imaging and strain analysis of nano-scale SiGe structures by tip-enhanced Raman spectroscopy,” Ultramicroscopy111(11), 1630–1635 (2011). [CrossRef] [PubMed]
  15. P. Hermann, H. Fabian, D. Naumann, and A. Hermelink, “Comparative study of far-field and near-field Raman spectra from silicon-based samples and biological nanostructures,” J. Phys. Chem. C115(50), 24512–24520 (2011). [CrossRef]
  16. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005). [CrossRef] [PubMed]
  17. S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express17(24), 21794–21801 (2009). [CrossRef] [PubMed]
  18. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express13(22), 8893–8899 (2005). [CrossRef] [PubMed]
  19. M. L. Daus, K. Wagenführ, A. Thomzig, S. Boerner, P. Hermann, A. Hermelink, M. Beekes, and P. Lasch, “Infrared microspectroscopy detects protein misfolding cyclic amplification (PMCA)-induced conformational alterations in hamster scrapie Progeny seeds,” J. Biol. Chem.288(49), 35068–35080 (2013). [CrossRef] [PubMed]
  20. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater.19(17), 2209–2212 (2007). [CrossRef]
  21. U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett.84(8), 1422–1424 (2004). [CrossRef]
  22. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.85(14), 2715–2717 (2004). [CrossRef]
  23. F. Buersgens, R. Kersting, and H.-T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett.88(11), 112115 (2006). [CrossRef]
  24. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express16(5), 3430–3438 (2008). [CrossRef] [PubMed]
  25. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett.100(25), 256403 (2008). [CrossRef] [PubMed]
  26. K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, “Terahertz near-field microscope: Analysis and measurement of scattering signals,” IEEE Trans. THz Sci. Technol.1, 164–168 (2011).
  27. A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnology21(23), 235702 (2010). [CrossRef] [PubMed]
  28. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett.10(4), 1387–1392 (2010). [CrossRef] [PubMed]
  29. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012). [CrossRef]
  30. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012). [CrossRef] [PubMed]
  31. B. Pollard, E. A. Muller, K. Hinrichs, and M. B. Raschke, “Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics,” Nat. Commun.5, 3587 (2014). [CrossRef] [PubMed]
  32. I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, “Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy,” Nat. Commun.4, 2890 (2013). [CrossRef] [PubMed]
  33. M. Paulite, Z. Fakhraai, I. T. S. Li, N. Gunari, A. E. Tanur, and G. C. Walker, “Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy,” J. Am. Chem. Soc.133(19), 7376–7383 (2011). [CrossRef] [PubMed]
  34. A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt. Express17(25), 22351–22357 (2009). [CrossRef] [PubMed]
  35. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011). [CrossRef] [PubMed]
  36. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487(7405), 77–81 (2012). [PubMed]
  37. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express19(13), 12469–12479 (2011). [CrossRef] [PubMed]
  38. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011). [CrossRef] [PubMed]
  39. I. M. Craig, M. S. Taubman, A. S. Lea, M. C. Phillips, E. E. Josberger, and M. B. Raschke, “Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser,” Opt. Express21(25), 30401–30414 (2013). [CrossRef] [PubMed]
  40. Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotech.9, 63–66 (2011). [CrossRef]
  41. D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser.359, 012015 (2012). [CrossRef]
  42. P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express21(3), 2913–2919 (2013). [CrossRef] [PubMed]
  43. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectroscopic imaging,” Proc. Natl. Acad. Sci., published ahead of print (2014).
  44. J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams14(3), 030705 (2011). [CrossRef]
  45. R. Müller, A. Hoehl, A. Matschulat, A. Serdyukov, G. Ulm, J. Feikes, M. Ries, and G. Wüstefeld, “Status of the IR and THz beamlines at the metrology light source,” J. Phys. Conf. Ser.359, 012004 (2012). [CrossRef]
  46. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature418(6894), 159–162 (2002). [CrossRef] [PubMed]
  47. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol.4(3), 153–157 (2009). [CrossRef] [PubMed]
  48. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011). [CrossRef]
  49. M. Ishikawa, M. Katsura, S. Nakashima, Y. Ikemoto, and H. Okamura, “Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz,” Opt. Express20(10), 11064–11072 (2012). [CrossRef] [PubMed]
  50. L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012). [CrossRef]
  51. C. Pecharromán, F. Gracía, J. P. Holgado, M. Ocana, A. R. Gonzalez-Elipe, J. Bassas, J. Santiso, and A. Figueras, “Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,” J. Appl. Phys.93(8), 4634–4645 (2003). [CrossRef]
  52. E. F. Krimmel, E. F. Hockings, and D. Schiöberg, Gmelin Handbook of Inorganic and Organometallic Chemistry. – System Number 15: Si. Silicon. – Supplement Volume B5b2: Silicon Nitride: Electronic Structure, Electrical, Magnetic, and Optical Properties; Spectra; Analysis (Springer, 1997).
  53. M. Sunkara, S. Sharma, H. Chandrasekaran, M. Talbott, K. Krogman, and G. Bhimarasetti, “Bulk synthesis of a-SixNyH and a-SixOy straight and coiled nanowires,” J. Mater. Chem.14(4), 590–594 (2004). [CrossRef]
  54. G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, “Fourier transform infrared spectroscopy of annealed silicon-rich nitride thin films,” J. Appl. Phys.104(10), 104310 (2008). [CrossRef]
  55. S. C. Jain, H. E. Maes, K. Pinardi, and I. De Wolf, “Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology,” J. Appl. Phys.79(11), 8145–8165 (1996). [CrossRef]
  56. P. Hermann, M. Hecker, F. Renn, M. Rölke, K. Kolanek, J. Rinderknecht, and L. M. Eng, “Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate,” J. Appl. Phys.109(12), 124513 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited