OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17959–17967

Temperature dependence of the radiative recombination time in ZnO nanorods under an external magnetic field of 6T

W. Lee, T. Kiba, A. Murayama, C. Sartel, V. Sallet, I. Kim, R. A. Taylor, Y. D. Jho, and K. Kyhm  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 17959-17967 (2014)
http://dx.doi.org/10.1364/OE.22.017959


View Full Text Article

Enhanced HTML    Acrobat PDF (2542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Temperature dependence of the exciton radiative decay time in ZnO nanorods has been investigated, which is associated with the density of states for the intra-relaxation of thermally excited excitons. The photoluminescence decay time was calibrated by using the photoluminescence intensity in order to obtain the radiative decay time. In the absence of an external magnetic field, we have confirmed that the radiative decay time increased with temperature in a similar manner to that seen in bulk material (∼ T1.5). Under an external magnetic field of 6T parallel to the c-axis, we found that the power coefficient of the radiative decay time with temperature decreased (∼ T1.3) when compared to that in the absence of a magnetic field. This result can be attributed to an enhancement of the effective mass perpendicular to the magnetic field and a redshift of the center-of-mass exciton as a consequence of perturbation effects in the weak-field regime.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Materials

History
Original Manuscript: May 6, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 9, 2014
Published: July 17, 2014

Citation
W. Lee, T. Kiba, A. Murayama, C. Sartel, V. Sallet, I. Kim, R. A. Taylor, Y. D. Jho, and K. Kyhm, "Temperature dependence of the radiative recombination time in ZnO nanorods under an external magnetic field of 6T," Opt. Express 22, 17959-17967 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-17959


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter16, R829–R858 (2004).
  2. Mark Fox, Optical Properties of Solids, 2nd Edition (OXFORD University Press, 2010).
  3. S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A53, 491–502 (1991). [CrossRef]
  4. Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett.96, 237401 (2006). [CrossRef] [PubMed]
  5. Claus F. Klingshirn, Semiconductor Optics, 4th Edition (Springer, 2012). [CrossRef]
  6. G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B35, 8281–8284 (1987). [CrossRef]
  7. H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett.72, 924–927 (1994). [CrossRef] [PubMed]
  8. F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E22, 624–627 (2004). [CrossRef]
  9. Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C.10, 1292–1296 (2013).
  10. X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett.90, 013107 (2007). [CrossRef]
  11. Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett.87, 252117 (2005). [CrossRef]
  12. Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett.94, 269104 (2009).
  13. Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B65, 075207 (2002). [CrossRef]
  14. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B22, 932–948 (2004). [CrossRef]
  15. Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem.100, 1027–1035 (1996). [CrossRef]
  16. R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B22, 863–871 (1980). [CrossRef]
  17. D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.103, 063502 (2008). [CrossRef]
  18. W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett.82, 964–966 (2003). [CrossRef]
  19. Richard L. Liboff, Introductory Quantum Mechanics, 4th Edition (Addison - Wesley, 2003).
  20. Kerson Huang, Statistical Mechanics, 2nd Edition (John Wiley & Sons, 1987).
  21. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103, 459–463 (1997). [CrossRef]
  22. J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B54, 1975–1981 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited