OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17979–17989

Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble

Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17979-17989 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a system for realizing controllable optomechanically induced transparency (OMIT) and ponderomotive squeezing. In this system, an atomic ensemble driven by an external optical field couples with the cavity field in a typical optomechanical cavity. When the cavity is driven by a coupling laser and a probe laser, we can produce a switch for the probe field and adjust the width of the transparency window flexibly by manipulating the coupling strength between the atomic ensemble and the external optical field. We also investigate the ponderomotive squeezing properties of the transmitted field by analyzing its spectrum. Interestingly, the coupling strength between the atomic ensemble and the cavity field plays an important role in controlling the squeezing properties and the squeezing spectrum presents distinct features at red-detuned and blue-detuned frequencies by adjusting the coupling strength.

© 2014 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.6570) Quantum optics : Squeezed states
(140.3945) Lasers and laser optics : Microcavities

ToC Category:

Original Manuscript: May 12, 2014
Revised Manuscript: June 26, 2014
Manuscript Accepted: July 9, 2014
Published: July 17, 2014

Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang, "Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble," Opt. Express 22, 17979-17989 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010). [CrossRef]
  2. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010). [CrossRef] [PubMed]
  3. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204 (2011). [CrossRef]
  4. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69 (2011). [CrossRef]
  5. Devrim Tarhan, Sumei Huang, Ö zgür, and E. Müstecaplioğlu, “Superluminal and ultraslow light propagation in optomechanical systems,” Phys. Rev. A 87, 013824 (2013). [CrossRef]
  6. Bin Chen, Cheng Jiang, and Ka-Di Zhu, “Slow light in a cavity optomechanical system with a Bose-Einstein condensate,” Phys. Rev. A 83, 055803 (2011). [CrossRef]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706 (2009). [CrossRef]
  8. Victor Fiore, Yong Yang, Mark C. Kuzyk, Russell Barbour, Lin Tian, and Hailin Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011). [CrossRef] [PubMed]
  9. E. Verhagen, S. Delalise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63 (2012). [CrossRef]
  10. G. S. Agarwal and S. Huang, “Optomechanical systems as single-photon routers,” Phys. Rev. A 85, 021801(R) (2012). [CrossRef]
  11. C. Jiang, B. Chen, and K.-D. Zhu, “Demonstration of a single-photon router with a cavity electromechanical system,” J. Appl. Phys. 112, 033113 (2012). [CrossRef]
  12. S. Shahidani, M. H. Naderi, and M. Soltanolkotabi, “Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors,” Phys. Rev. A 88, 053813 (2013). [CrossRef]
  13. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172 (2008). [CrossRef] [PubMed]
  14. F. Marquardt and S. M. Girvin, “Trend: optomechanics,” Physics 2, 40 (2009). [CrossRef]
  15. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
  16. M. Bhattacharya and P. Meystre, “Trapping and cooling a mirror to its quantum mechanical ground state,” Phys. Rev. Lett. 99, 073601 (2007). [CrossRef] [PubMed]
  17. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  18. L. Tian and H. L. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A 82, 053806 (2010). [CrossRef]
  19. Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012). [CrossRef] [PubMed]
  20. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013). [CrossRef]
  21. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007). [CrossRef] [PubMed]
  22. M. J. Hartmann and M. B. Plenio, “Steady state entanglement in the mechanical vibrations of two dielectric membranes,” Phys. Rev. Lett. 101, 200503 (2008). [CrossRef] [PubMed]
  23. A A Clerk, F Marquardt, and K Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008). [CrossRef]
  24. Jie-Qiao Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011). [CrossRef]
  25. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49, 1337 (1994). [CrossRef] [PubMed]
  26. N. Ph. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426 (1995). [CrossRef] [PubMed]
  27. E. Alebachew and K. Fessah, “Interaction of a two-level atom with squeezed light,” Opt. Commun. 271, 154 (2007). [CrossRef]
  28. S. Mancini and P. Tombesi, “Quantum noise reduction by radiation yressure,” Phys. Rev. A 49, 4055 (1994). [CrossRef] [PubMed]
  29. D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature (London) 448, 476 (2012). [CrossRef]
  30. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature (London) 500, 185 (2013). [CrossRef]
  31. T. P. Purdy, P.-L. Yu, R.W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X,  3, 031012 (2013).
  32. D. Meiser and P. Meystre, “Coupled dynamics of atoms and radiation-pressure-driven interferometers,” Phys. Rev. A 73, 033417 (2006). [CrossRef]
  33. K. Hammerer, K. Stannigel, C. Genes, and P. Zoller, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803(R) (2010). [CrossRef]
  34. C. P. Sun, Y. Li, and X. F. Liu, “Quasi-spin-wave quantum memories with a dynamical symmetry,” Phys. Rev. Lett. 91, 147903 (2003). [CrossRef] [PubMed]
  35. J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555 (1958). [CrossRef]
  36. C. W. Gardiner and P. Zoller, Quantum noise (Springer) (2004).
  37. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
  38. S. Gröblacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009). [CrossRef]
  39. C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008). [CrossRef]
  40. Y. Han, J. Cheng, and L. Zhou, “Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium,” J. Phys. B: At. Mol. Opt. Phys. 44165505 (2011). [CrossRef]
  41. M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887 (1985). [CrossRef] [PubMed]
  42. E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited