OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17990–17998

Contribution of defect on early stage of LIPSS formation

Hisashi Shimizu, Shuhei Yada, Go Obara, and Mitsuhiro Terakawa  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17990-17998 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated an early stage of laser-induced periodic surface structure (LIPSS) formation to elucidate the contribution of defects on the formation. 4H-SiC crystals were irradiated by multiple pulses of femtosecond laser with different laser spot sizes. We observed the decrease in formation thresholds of high-spatial-frequency LIPSS (HSFL) and low-spatial-frequency LIPSS (LSFL) with the increased irradiated laser spot size. For smaller laser spot size, HSFL was only formed at the periphery of LSFL formation area, whereas for larger spot size, HSFL was randomly distributed within the laser spot. Our results are coincident with the hypothesis that the existence of defects in crystal contributes to the early stage on the formation of LIPSS, in which the electron excitation via one or two photon absorption in a defect site cause local nanoablation at a laser fluence under the intrinsic ablation threshold, followed by the formation of a nanovoid, which act as a scatterer, and interference of scattered wave and laser pulses lead to HSFL formation.

© 2014 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: April 30, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: July 10, 2014
Published: July 17, 2014

Hisashi Shimizu, Shuhei Yada, Go Obara, and Mitsuhiro Terakawa, "Contribution of defect on early stage of LIPSS formation," Opt. Express 22, 17990-17998 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng.7(2), 194–197 (2012). [CrossRef]
  3. M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng.51(12), 121815 (2012). [CrossRef]
  4. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002). [CrossRef]
  5. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  6. B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt.10(3), 035301 (2008). [CrossRef]
  7. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012). [CrossRef]
  8. J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process.59, 289–293 (1994). [CrossRef]
  9. E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett.100(4), 041106 (2012). [CrossRef]
  10. N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006). [CrossRef]
  11. C. Teichert, “Self-organization of nanostructures in semiconductor heteroepitaxy,” Phys. Rep.365(5-6), 335–432 (2002). [CrossRef]
  12. A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online1(2), 44–48 (2006). [CrossRef]
  13. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009). [CrossRef]
  14. K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys.51(12R), 125203 (2012). [CrossRef]
  15. X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008). [CrossRef] [PubMed]
  16. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructures formation by ultrafast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010). [CrossRef]
  17. R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys.524(11), L5–L10 (2012). [CrossRef]
  18. A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B111(3), 419–423 (2013). [CrossRef]
  19. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  20. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  21. J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984). [CrossRef]
  22. J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011). [CrossRef]
  23. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009). [CrossRef]
  24. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  25. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197, 891–895 (2002). [CrossRef]
  26. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys.111(12), 124315 (2012). [CrossRef]
  27. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  28. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011). [CrossRef] [PubMed]
  29. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010). [CrossRef]
  30. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011). [CrossRef] [PubMed]
  31. A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett.94(4), 266–269 (2011). [CrossRef]
  32. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express6(11), 112701 (2013).
  33. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108(4), 043523 (2010). [CrossRef]
  34. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003). [CrossRef]
  35. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982). [CrossRef] [PubMed]
  36. E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B61, 036502 (2013).
  37. A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett.96(2), 025502 (2006). [CrossRef] [PubMed]
  38. A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett.71(25), 3700–3702 (1997). [CrossRef]
  39. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express21(22), 26323–26334 (2013). [CrossRef] [PubMed]
  40. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process.69(7), S373–S376 (1999). [CrossRef]
  41. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007). [CrossRef]
  42. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited