OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 17999–18009

Superpixel-based spatial amplitude and phase modulation using a digital micromirror device

Sebastianus A. Goorden, Jacopo Bertolotti, and Allard P. Mosk  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 17999-18009 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.0090) Holography : Holography
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

Original Manuscript: May 15, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 3, 2014
Published: July 17, 2014

Sebastianus A. Goorden, Jacopo Bertolotti, and Allard P. Mosk, "Superpixel-based spatial amplitude and phase modulation using a digital micromirror device," Opt. Express 22, 17999-18009 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013). [CrossRef]
  2. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  3. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6, 57–119 (2014). [CrossRef]
  4. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012). [CrossRef] [PubMed]
  5. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012). [CrossRef]
  6. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef] [PubMed]
  7. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012). [CrossRef]
  8. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef] [PubMed]
  9. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011). [CrossRef] [PubMed]
  10. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008). [CrossRef] [PubMed]
  11. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010). [CrossRef] [PubMed]
  12. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011). [CrossRef]
  13. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012). [CrossRef]
  14. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012). [CrossRef]
  15. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef] [PubMed]
  16. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon. 5, 372–377 (2011). [CrossRef]
  17. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011). [CrossRef]
  18. J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012). [CrossRef]
  19. Y. F. Guan, O. Katz, E. Small, J. Y. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012). [CrossRef] [PubMed]
  20. J. H. Park, C. Park, H. Yu, Y. Cho, and Y. H. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012). [CrossRef] [PubMed]
  21. E. Small, O. Katz, Y. F. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012). [CrossRef]
  22. S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. H. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22, 8320–8332 (2014). [CrossRef] [PubMed]
  23. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003). [CrossRef]
  24. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011). [CrossRef] [PubMed]
  25. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969). [CrossRef]
  26. T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001). [CrossRef]
  27. E. Ulusoy, L. Onural, and H. M. Ozaktas, “Synthesis of three-dimensional light fields with spatial light modulators,” J. Opt. Soc. Am. A 28, 1211–1223 (2011). [CrossRef]
  28. W.-H. Lee, “Computer-generated holograms: Techniques and applications,” (Elsevier, 1978), pp. 119–232.
  29. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351–4360 (1987). [CrossRef] [PubMed]
  30. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012). [CrossRef]
  31. W.-H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974). [CrossRef] [PubMed]
  32. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012). [CrossRef] [PubMed]
  33. M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013). [CrossRef]
  34. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012). [CrossRef] [PubMed]
  35. E. Ulusoy, L. Onural, and H. Ozaktas, “Full-complex amplitude modulation with binary spatial light modulators,” J. Opt. Soc. Am. A 28, 2310–2321 (2011). [CrossRef]
  36. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef] [PubMed]
  37. S. A. Goorden, J. Bertolotti, and A. P. Mosk, Control software for superpixel-based phase and amplitude modulation using a DMD, open source: https://sourceforge.net/projects/fullfieldmodulation (2014).
  38. A. Yao and M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011). [CrossRef]
  39. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007). [CrossRef] [PubMed]
  40. L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  41. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  42. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited