OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18027–18035

Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals

Byeongdae Choi, Seongkyu Song, Soon Moon Jeong, Seok-Hwan Chung, and Anatoliy Glushchenko  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18027-18035 (2014)
http://dx.doi.org/10.1364/OE.22.018027


View Full Text Article

Enhanced HTML    Acrobat PDF (2570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an optical film with electrically tunable birefringence in which the liquid crystals (LCs), mixed with the host polymer, form long-range ordering. The film was prepared through polymerization without phase separation between the LCs and polymers. Driving voltage below 30 V for full switching of birefringence is achieved in a 6 μm-thick film. Electro-optical investigations for the film suggest that the long-range ordering of the LCs mixed in the film caused by polymerization lead to rotations of the LCs as well as optical anisotropy in the film. These films with electrically tunable birefringence could have applications as flexible light modulators and phase retardation films for 2D–3D image switching.

© 2014 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(160.0160) Materials : Materials
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(130.4110) Integrated optics : Modulators

ToC Category:
Materials

History
Original Manuscript: May 26, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 9, 2014
Published: July 17, 2014

Citation
Byeongdae Choi, Seongkyu Song, Soon Moon Jeong, Seok-Hwan Chung, and Anatoliy Glushchenko, "Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals," Opt. Express 22, 18027-18035 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Stöhr and M. Samant, “Liquid crystal alignment by rubbed polymer surface: a microscopic bond orientation model,” J. Electron Spectrosc. Relat. Phenom.98–99, 189–207 (1999). [CrossRef]
  2. N. A. J. M. van Aerle, M. Barmentlo, and R. W. J. Hollering, “Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid crystal displays,” J. Appl. Phys.74(5), 3111–3120 (1993). [CrossRef]
  3. D.-H. Chung, T. Fukuda, Y. Takanishi, K. Ishikawa, H. Matsuda, H. Takezoe, and M. A. Osipov, “Competitive effects of grooves and photoalignment on nematic liquid-crystal alignment using azobenzene polymer,” J. Appl. Phys.92(4), 1841–1844 (2002). [CrossRef]
  4. S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett.91(6), 061112 (2007). [CrossRef]
  5. F. Nemoto, I. Nishiyama, Y. Takanishi, and J. Yamamoto, “Anchoring and alignment in a liquid crystal cell: self-alignment of homogeneous nematic,” Soft Matter8(45), 11526–11530 (2012). [CrossRef]
  6. O. Sato, T. Kasai, M. Sato, K. Sakajiri, Y. Tsujii, S. Kang, J. Watanabe, and M. Tokita, “High-density poly (hexyl methacrylate) brushes offering a surface for near-zero azimuthal anchoring of liquid crystals at room temperature,” J. Mater. Chem. C1(48), 7992–7995 (2013). [CrossRef]
  7. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett.81(8), 1432–1434 (2002). [CrossRef]
  8. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express19(10), 9744–9749 (2011). [CrossRef] [PubMed]
  9. S. J. Lee, C. K. Morizio, and M. Johnson, “Novel frame buffer pixel circuits for liquid-crystal-on-silicon microdisplays,” IEEE J. Solid-State Circuits39(1), 132–139 (2004). [CrossRef]
  10. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Display Techol.6(10), 443–454 (2010). [CrossRef]
  11. J. Vogelsang, J. Brazard, T. Adachi, J. C. Bolinger, and P. F. Barbara, “Watching the annealing process one polymer chain at a time,” Angew. Chem. Int. Ed. Engl.50(10), 2257–2261 (2011). [CrossRef] [PubMed]
  12. M. Vacha and M. Habuchi, “Conformation and physics of polymer chains: a single-molecule perspective,” NPG Asia Mater.2(4), 134–142 (2010). [CrossRef]
  13. M. W. J. van der Wielen, M. A. Cohen Stuart, G. J. Fleer, D. K. G. de Boer, A. J. G. Leenaers, R. P. Nieuwhof, A. T. M. Marcelis, and E. J. R. Sudhölter, “Order in thin films of side-chain liquid-crystalline polymers,” Langmuir13(17), 4762–4766 (1997). [CrossRef]
  14. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of liquid crystalline polymer on single substrates,” Jpn. J. Appl. Phys.34, L764 (1995). [CrossRef]
  15. J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Phys.62(10), 4100–4108 (1987). [CrossRef]
  16. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, “Near surface alignment of polymers in rubbed films,” Nature374(6524), 709–711 (1995). [CrossRef]
  17. Y. R. Shen, “Studies of liquid crystal monolayers and films by optical second harmonic generation,” Liq. Cryst.5(2), 635–643 (1989). [CrossRef]
  18. W. Chen, M. B. Feller, and Y. R. Shen, “Investigation of anisotropic molecular orientational distributions of liquid-crystal monolayers by optical second-harmonic generation,” Phys. Rev. Lett.63(24), 2665–2668 (1989). [CrossRef] [PubMed]
  19. S. H. Hwang, K. J. Yang, S. H. Woo, B. D. Choi, E. H. Kim, and B. K. Kim, “Preparation of newly designed reverse mode polymer dispersed liquid crystals and its electro-optic characteristics,” Mol. Cryst. Liq. Cryst.470(1), 163–171 (2007). [CrossRef]
  20. H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011). [CrossRef] [PubMed]
  21. J. H. Oh, W. H. Park, B. S. Oh, D. H. Kang, H. J. Kim, S. M. Hong, H. J. Hur, and J. Jang, “Stereoscopic TFT-LCD with wire grid polarizer and retarder,” Proc. SID Int. Symp. Dig. Tech. Pap.39, 444–447 (2008).
  22. V. Belyaev, A. Solomatin, and D. Chausov, “Phase retardation vs. pretilt angle in liquid crystal cells with homogeneous and inhomogeneous LC director configuration,” Opt. Express21(4), 4244–4249 (2013). [CrossRef] [PubMed]
  23. H. G. Jerrard, “Optical compensators for measurement of elliptical polarization,” J. Opt. Soc. Am.38(1), 35–59 (1948). [CrossRef]
  24. S.-J. Sung, E. Ae Jung, K.-J. Yang, Y. Tae Park, J.-K. Kang, and B.-D. Choi, “Liquid crystal alignment properties of inorganic SiO2 layers prepared by reactive sputtering in nitrogen-argon mixtures,” Mol. Cryst. Liq. Cryst.507(1), 137–149 (2009). [CrossRef]
  25. J.-M. Jin, K. Parbhakar, and L. H. Dao, “Polymerization induced phase separation (PIPS) in a polymer dispersed liquid crystal (PDLC) system: A Monte-Carlo simulation approach,” Liq. Cryst.19(6), 791–795 (1995). [CrossRef]
  26. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D8(13), 1575–1584 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited