OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18036–18043

Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core

Jiang Sun, Zexin Kang, Jing Wang, Chao Liu, and Shuisheng Jian  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18036-18043 (2014)
http://dx.doi.org/10.1364/OE.22.018036


View Full Text Article

Enhanced HTML    Acrobat PDF (1269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel design, two-layer low-index trench fiber with parabolic-profile core, is proposed and investigated numerically in this paper. Based on scalar FD-BPM algorithm, the excellent performance over other types of structures and great potential in mode area enlargement are demonstrated. The effective mode area of our design (D = 100μm) is approximately 890 μm2. Both the high order mode (HOM) suppression and bending resistance of our design are better than that of Multi-Trench Fiber (MTF). The mode loss ratio and effective mode area are independent on the bending radius. Due to the circular symmetry of our proposed configuration design, the bending property is not varied with the changing of bending directions.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics

History
Original Manuscript: May 26, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: July 7, 2014
Published: July 17, 2014

Citation
Jiang Sun, Zexin Kang, Jing Wang, Chao Liu, and Shuisheng Jian, "Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core," Opt. Express 22, 18036-18043 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt.51(1), 15–20 (2012). [CrossRef] [PubMed]
  3. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AWA1.
  4. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express20(24), 26363–26372 (2012). [CrossRef] [PubMed]
  5. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000). [CrossRef] [PubMed]
  6. C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, Baltimore, Maryland, 2007), p. CTuBB3. [CrossRef]
  7. M. Devautour, P. Roy, and S. Février, “3-D modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, Baltimore, Maryland, 2009), p. JWA54. [CrossRef]
  8. M. Napierała, T. Nasilowski, E. Bereś-Pawlik, P. Mergo, F. Berghmans, and H. Thienpont, “Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss,” Opt. Express19(23), 22628–22636 (2011). [CrossRef] [PubMed]
  9. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006). [CrossRef] [PubMed]
  10. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B24(8), 1677–1682 (2007). [CrossRef]
  11. L. A. Dong, J. Li, H. A. McKay, L. B. Fu, and B. K. Thomas, “Large effective mode area optical fibers for high power lasers,” Proc. SPIE7195, 71950N (2009). [CrossRef]
  12. D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with multi-trench rod-type fibers,” Opt. Express21(2), 1448–1455 (2013). [CrossRef] [PubMed]
  13. D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multi-trench fibers,” Opt. Express21(22), 26663–26670 (2013). [CrossRef] [PubMed]
  14. A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002). [CrossRef] [PubMed]
  15. J. Van Roey, J. van derDonk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am.71(7), 803–810 (1981). [CrossRef]
  16. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990). [CrossRef]
  17. L. Dong, H. A. McKay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009). [CrossRef]
  18. G. C. Gu, F. T. Kong, T. W. Hawkins, P. Foy, K. X. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express21(20), 24039–24048 (2013). [CrossRef] [PubMed]
  19. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt.21(23), 4208–4213 (1982). [CrossRef] [PubMed]
  20. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express13(9), 3477–3490 (2005). [CrossRef] [PubMed]
  21. R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Modeling the evolution of spatial beam parameters in parabolic index fibers,” Opt. Lett.37(17), 3636–3638 (2012). [CrossRef] [PubMed]
  22. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol.27(15), 3010–3016 (2009). [CrossRef]
  23. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13(3), 546–551 (2007). [CrossRef]
  24. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  25. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea.13(4), 416–422 (2009). [CrossRef]
  26. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B24(8), 1669–1676 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited