OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18044–18055

Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes

B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18044-18055 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel type of few-mode fiber, characterized by an inverse-parabolic graded-index profile, is proposed for the robust transmission of cylindrical vector modes as well as modes carrying quantized orbital angular momentum (OAM). Large effective index separations between vector modes (>2.1 × 10−4) are numerically calculated and experimentally confirmed in this fiber over the whole C-band, enabling transmission of OAM(+/−1,1) modes for distances up to 1.1 km. Simple design rules are provided for the optimization of the fiber parameters.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Fiber Optics

Original Manuscript: May 23, 2014
Revised Manuscript: July 2, 2014
Manuscript Accepted: July 6, 2014
Published: July 17, 2014

B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, "Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes," Opt. Express 22, 18044-18055 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012). [CrossRef]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]
  3. P. M. Krummrich, “Spatial multiplexing for high capacity transport,” Opt. Fiber Technol. 17(5), 480–489 (2011). [CrossRef]
  4. P. J. Winzer, “Energy-Efficient Optical Transport Capacity Scaling Through Spatial Multiplexing,” IEEE Photon. Technol. Lett. 23(13), 851–853 (2011). [CrossRef]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
  6. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006). [CrossRef] [PubMed]
  7. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef] [PubMed]
  9. P. Gregg, P. Kristensen, S. E. Golowich, J. Ø. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable Transmission of 12 OAM States in Air-Core Fiber,” in Proc. of CLEO: 2012, CTu2K (2013). [CrossRef]
  10. C. Brunet, B. Ung, Y. Messaddeq, S. LaRochelle, E. Bernier, and L. A. Rusch, “Design of an Optical Fiber Supporting 16 OAM Modes,” in Proc. of OFC: 2014, Th2A.24 (2014). [CrossRef]
  11. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photon. J. 4(2), 535–543 (2012). [CrossRef]
  12. S. Li and J. Wang, “A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes),” Sci. Rep. 4, 3853 (2014). [CrossRef] [PubMed]
  13. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37(11), 1889–1891 (2012). [CrossRef] [PubMed]
  14. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Inverse-parabolic graded-index profile for transmission of cylindrical vector modes in optical fibers,” in Proc. of OFC: 2014, Tu3K.4 (2014). [CrossRef]
  15. R. L. Lachance and P.-A. Bélanger, “Modes in Divergent Parabolic Graded-Index Optical Fibers,” J. Lightwave Technol. 9(11), 1425–1430 (1991). [CrossRef]
  16. J. Bures, Guided Optics: Optical Fibers and All-Fiber Components (Wiley-VCH, 2009), Chap. 5.
  17. M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975). [CrossRef]
  18. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982). [CrossRef] [PubMed]
  19. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013). [CrossRef] [PubMed]
  20. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006). [CrossRef] [PubMed]
  21. M. E. Lines, W. A. Reed, D. J. DiGiovanni, and J. R. Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35(12), 1009–1010 (1999). [CrossRef]
  22. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  23. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  24. L. Wang, P. Vaity, B. Ung, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Characterization of OAM fibers using fiber Bragg gratings,” Opt. Express 22(13), 15653–15661 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited