OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18078–18092

Absolute calibration of fiber-coupled single-photon detector

Tommaso Lunghi, Boris Korzh, Bruno Sanguinetti, and Hugo Zbinden  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18078-18092 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better than 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Federal Institute of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

© 2014 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:

Original Manuscript: April 14, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 8, 2014
Published: July 18, 2014

Tommaso Lunghi, Boris Korzh, Bruno Sanguinetti, and Hugo Zbinden, "Absolute calibration of fiber-coupled single-photon detector," Opt. Express 22, 18078-18092 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013). [CrossRef]
  2. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013). [CrossRef]
  3. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208 (2013). [CrossRef] [PubMed]
  4. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010). [CrossRef] [PubMed]
  5. P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970). [CrossRef]
  6. B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013). [CrossRef] [PubMed]
  7. J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 20347 (2011). [CrossRef] [PubMed]
  8. A. C. Parr, “The candela and photometric and radiometric measurements,” J. Res. NIST 106(1), 151–186 (2000). [CrossRef]
  9. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007). [CrossRef] [PubMed]
  10. S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 569, 1045–1052 (2009). [CrossRef]
  11. M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004). [CrossRef]
  12. B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012). [CrossRef]
  13. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012). [CrossRef]
  14. F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013). [CrossRef]
  15. J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004). [CrossRef]
  16. http://refractiveindex.info .
  17. see e.g. EXFO Tunable laser source: IQS/FLS 2600.
  18. B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010). [CrossRef] [PubMed]
  19. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014). [CrossRef]
  20. I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).
  21. D. W. Scott, “On optimal and data-based histograms,” Biometrika 66(3), 605–610 (1979). [CrossRef]
  22. J. W. Kindt, Geiger Mode Avalanche Photodiode Arrays: For Spatially Resolved Single Photon Counting (Delft University Press, 1999).
  23. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009). [CrossRef]
  24. S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited