OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18128–18141

Polarized focused vortex beams: half-order phase vortices

Colin J. R. Sheppard  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18128-18141 (2014)
http://dx.doi.org/10.1364/OE.22.018128


View Full Text Article

Enhanced HTML    Acrobat PDF (2282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical treatment is presented for the focusing of polarized vortex beams, including the generation of Bessel beams. A combination of a phase vortex with arbitrary topological charge, and a polarization vortex of arbitrary order is considered. Results are given for both paraxial and high NA systems. Conditions for the presence of non-zero on-axis intensity are given. An interesting observation is that half-order phase vortices can exist, without the existence of any phase discontinuity. The behavior of Bessel beams with half-order phase vortices is investigated.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

History
Original Manuscript: May 26, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 11, 2014
Published: July 18, 2014

Citation
Colin J. R. Sheppard, "Polarized focused vortex beams: half-order phase vortices," Opt. Express 22, 18128-18141 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. Berry, “Dislocations of wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974). [CrossRef]
  2. W. J. Condell, “Fraunhoffer diffraction from a circular aperture with helical phase factor,” J. Opt. Soc. Am.2(2), 206 (1985). [CrossRef]
  3. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wave-fronts,” J. Mod. Opt.39, 985–990 (1992).
  4. N. Heckenberg, R. McDuff, C. P. Smith, and H. Rubinstein Dunlop, “Laser beams with phase singularities,” Opt. Quantum Electron.24, S951–S962 (1992).
  5. V. V. Kotlyar and V. A. Soifer, “Rotor spatial filter for analysis and synthesis of coherent fields,” Opt. Commun.89(2–4), 159–163 (1992).
  6. G. Indebetouw, “Optical vortices and their applications,” J. Mod. Opt.40(1), 73–87 (1993). [CrossRef]
  7. I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun.101(3–4), 247–264 (1993). [CrossRef]
  8. M. Totzeck and H. J. Tiziani, “Phase-singularities in 2D diffraction fields and interference microscopy,” Opt. Commun.138(4–6), 365–382 (1997). [CrossRef]
  9. L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett.6(1), 22–23 (1981). [CrossRef] [PubMed]
  10. G. P. Agrawal and M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A27(3), 1693–1695 (1983). [CrossRef]
  11. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian-Maxwell beams,” J. Opt. Soc. Am. A3(4), 536–540 (1986). [CrossRef]
  12. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett.19(7), 427–429 (1994). [CrossRef] [PubMed]
  13. Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt.42(8), 1555–1566 (1995). [CrossRef]
  14. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett.21(1), 9–11 (1996). [CrossRef] [PubMed]
  15. P. L. Greene and D. G. Hall, “Diffraction characteristics of the azimuthal Bessel-gauss beam,” J. Opt. Soc. Am. A13(5), 962–966 (1996). [CrossRef]
  16. P. L. Greene and D. G. Hall, “Properties and diffraction of the azimuthal Bessel-Gauss beam,” J. Opt. Soc. Am. A15(12), 3020–3027 (1998). [CrossRef]
  17. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett.24(22), 1543–1545 (1999). [CrossRef] [PubMed]
  18. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1–6), 1–7 (2000). [CrossRef]
  19. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  20. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light - theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B72(1), 109–113 (2001). [CrossRef]
  21. L. E. Helseth, “Optical vortices in focal regions,” Opt. Commun.229(1–6), 85–91 (2004). [CrossRef]
  22. C. J. R. Sheppard, N. K. Balla, S. Rehman, E. Y. S. Yew, and W. T. Teng, “Bessel beams with the tightest focus,” Opt. Commun.282, 4647–4656 (2009). [CrossRef]
  23. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010). [CrossRef] [PubMed]
  24. C. J. R. Sheppard and S. Rehman, “Highly convergent focusing of light based on rotating dipole polarization,” Appl. Opt.50(22), 4463–4467 (2011). [CrossRef] [PubMed]
  25. J. F. Nye, “Polarization effects in the diffraction of electromagnetic waves: the role of disclinations,” Proc. R. Soc. Lond. A Math. Phys. Sci.387(1792), 105–132 (1983). [CrossRef]
  26. J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. Lond. A Math. Phys. Sci.389(1797), 279–290 (1983). [CrossRef]
  27. J. F. Nye and J. V. Hajnal, “The wave structure of monochromatic electromagnetic waves,” Proc. R. Soc. Lond. A Math. Phys. Sci.409(1836), 21–36 (1987). [CrossRef]
  28. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves, 1. Theory,” Proc. R. Soc. Lond. A Math. Phys. Sci.414(1847), 433–446 (1987). [CrossRef]
  29. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves, 2. Observations on the electric field,” Proc. R. Soc. Lond. A Math. Phys. Sci.414(1847), 447–468 (1987). [CrossRef]
  30. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, 1999).
  31. C. J. R. Sheppard, “Polarization of almost-plane waves,” J. Opt. Soc. Am. A17(2), 335–341 (2000). [CrossRef] [PubMed]
  32. J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt.5(1), 6–14 (2003). [CrossRef]
  33. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  34. X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science265(5170), 361–364 (1994). [CrossRef] [PubMed]
  35. W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science265(5170), 364–367 (1994). [CrossRef] [PubMed]
  36. A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express9(12), 637–644 (2001). [CrossRef] [PubMed]
  37. M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001). [CrossRef] [PubMed]
  38. N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt.6(3), 273–276 (2001). [CrossRef] [PubMed]
  39. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  40. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394(6691), 348–350 (1998). [CrossRef]
  41. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010). [CrossRef]
  42. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express20(7), 7362–7374 (2012). [CrossRef] [PubMed]
  43. C. J. R. Sheppard, “Polarization of beams and highly focused waves,” in ICO Topical Meeting on Polarization Optics, Polvijärvi, Finland (2003).
  44. W. T. Tang, E. Y. Yew, and C. J. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett.34(14), 2147–2149 (2009). [CrossRef] [PubMed]
  45. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A12(2), 325–332 (1995). [CrossRef]
  46. C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express15(26), 18014–18024 (2007). [CrossRef] [PubMed]
  47. C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part II : completing the basis set,” Opt. Express16(9), 6586–6591 (2008). [CrossRef] [PubMed]
  48. C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves Opt. Acoust.2, 163–166 (1978).
  49. D. Fink, “Polarization effects of axicons,” Appl. Opt.18(5), 581–582 (1979). [CrossRef] [PubMed]
  50. I. V. Basistiy, V. A. Pas’ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt.6(5), S166–S169 (2004). [CrossRef]
  51. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A22(5), 849–861 (2005). [CrossRef] [PubMed]
  52. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1862–1870 (2001). [CrossRef] [PubMed]
  53. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1871–1881 (2001). [CrossRef] [PubMed]
  54. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves Opt. Acoust.2, 105–112 (1978).
  55. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (12153 KB)     
» Media 2: AVI (12153 KB)     
» Media 3: AVI (12153 KB)     
» Media 4: AVI (12153 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited