OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18142–18158

Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging

Jui-Nung Liu, Matthew V. Schulmerich, Rohit Bhargava, and Brian T. Cunningham  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18142-18158 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C−H stretching region (2600−3300 cm−1). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(300.6340) Spectroscopy : Spectroscopy, infrared
(310.1210) Thin films : Antireflection coatings
(310.2790) Thin films : Guided waves
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Photonic Crystals

Original Manuscript: May 28, 2014
Revised Manuscript: June 28, 2014
Manuscript Accepted: July 1, 2014
Published: July 18, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Jui-Nung Liu, Matthew V. Schulmerich, Rohit Bhargava, and Brian T. Cunningham, "Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging," Opt. Express 22, 18142-18158 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012). [CrossRef] [PubMed]
  2. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005). [CrossRef] [PubMed]
  3. P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Appl. Spectrosc. 52(3), 106–120 (1998). [CrossRef]
  4. C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005). [CrossRef] [PubMed]
  5. G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009). [CrossRef] [PubMed]
  6. C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007). [CrossRef] [PubMed]
  7. R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006). [CrossRef]
  8. S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013). [CrossRef]
  9. R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013). [CrossRef] [PubMed]
  10. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 2007).
  11. R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013). [CrossRef] [PubMed]
  12. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011). [CrossRef] [PubMed]
  13. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005). [CrossRef] [PubMed]
  14. R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006). [CrossRef] [PubMed]
  15. C. D. Craver, ed., The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, Kirkwood, MO, 1982).
  16. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008). [CrossRef]
  17. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  18. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012). [CrossRef]
  19. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012). [CrossRef] [PubMed]
  20. D. L. Elmore, M.-W. Tsao, S. Frisk, D. B. Chase, and J. F. Rabolt, “Design and performance of a planar array infrared spectrograph that operates in the 3400 to 2000 cm−1 region,” Appl. Spectrosc. 56(2), 145–149 (2002). [CrossRef]
  21. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003). [CrossRef]
  22. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003). [CrossRef]
  23. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008). [CrossRef]
  24. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008). [CrossRef]
  25. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002). [CrossRef]
  26. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006). [CrossRef]
  27. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008). [CrossRef]
  28. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005). [CrossRef]
  29. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011). [CrossRef]
  30. J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010). [CrossRef] [PubMed]
  31. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011). [CrossRef] [PubMed]
  32. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011). [CrossRef]
  33. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  34. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]
  35. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012). [CrossRef]
  36. H. A. Macleod, “Band-pass filters,” in Thin-Film Optical Filters, 4th Edition (CRC Press, 2010).
  37. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008). [CrossRef]
  38. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays,” Opt. Express 13(12), 4406–4413 (2005). [CrossRef] [PubMed]
  39. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007). [CrossRef]
  40. Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008). [CrossRef] [PubMed]
  41. S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004). [CrossRef]
  42. J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. Brueck, “Infrared transmission resonances in double-layered, complementary-structure metallic gratings,” Opt. Express 15(14), 8737–8744 (2007). [CrossRef] [PubMed]
  43. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]
  44. J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19(24), 24182–24197 (2011). [CrossRef] [PubMed]
  45. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  46. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965). [CrossRef]
  47. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002). [CrossRef]
  48. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012). [CrossRef] [PubMed]
  49. Lj. Babić and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010). [CrossRef] [PubMed]
  50. K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013). [CrossRef]
  51. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  52. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  53. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]
  54. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]
  55. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003). [CrossRef] [PubMed]
  56. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  57. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011). [CrossRef] [PubMed]
  58. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).
  59. S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, New York, 1995).
  60. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985). [CrossRef]
  61. M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001). [CrossRef]
  62. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  63. Due to interference of the waves traveling to the right and to the left, the amplitude of the electric field |E(x)| ∝ |exp(ikmodex) ± exp(-ikmodex)| ∝ |cos(kmodex)| or |sin(kmodex)|. Therefore, |E(x)| is a standing wave with a period of π/kmode in the x direction. When kmode = 2π/Λ, the period of |E(x)| becomes Λ/2.
  64. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010). [CrossRef] [PubMed]
  65. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013). [CrossRef]
  66. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  67. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, New York, 2007).
  68. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010). [CrossRef] [PubMed]
  69. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010). [CrossRef] [PubMed]
  70. R. Bhargava, S.-Q. Wang, and J. L. Koenig, “FT-IR imaging of the interface in multicomponent systems using optical effects induced by differences in refractive index,” Appl. Spectrosc. 52(3), 323–328 (1998). [CrossRef]
  71. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited